Behaviour of thermally sprayed coating for hot corrosion applications

Review paper

Authors

DOI:

https://doi.org/10.5599/jese.2324

Keywords:

Sulphidation, tribology, wear resistance, cermet coatings
Graphical Abstract

Abstract

As modern air engines’ working temperatures are increasing, materials and coatings' hot corrosion resistance characteristics gain significant attention. Hot corrosion is a type of degradation at high temperatures that involves oxidizing or sulphidation of the substrate behind a layer of salt melt deposit, which either causes the development of a thick layer of sulphide scale or the penetration of sulphur via grain boundaries into the matrix to a deeper depth. It may notably change the microstructure, phase composition, and characteristics of the thermally sprayed coating. In recent years, thermally sprayed cermet coatings on steel have been more well-liked as a possible method for enhancing hot corrosion resistance. This review paper qualitatively summarizes the recent development of thermal sprayed coatings to improve hot corrosion performance.

Downloads

Download data is not yet available.

References

J. Stringer, Performance limitations in electric power generating systems imposed by high temperature corrosion, High Temperature Technology 3(3) (1985) 119-141. https://doi.org/10.1080/02619180.1985.11753292

J. Stringer, Coatings in the electricity supply industry: past, present, and opportunities for the future, Surface and Coatings Technology 108-109 (1998) 1-9. https://doi.org/10.1016/S0257-8972(98)00642-2

A. R. Rapp, Y. S. Zhang. Hot corrosion of materials: fundamental studies. JOM 46 (1994) 47-55. https://doi.org/10.1007/BF03222665

A. R. Rapp, Hot corrosion of materials: a fluxing mechanism?, Corrosion Science 44(2) (2002) 209-221. http://dx.doi.org/10.1016/S0010-938X(01)00057-9

T. S. Sidhu, A. Malik, S. Prakash, R. D. Agrawal, Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni-and Fe-based superalloys at 800 C, Journal of Thermal Spray Technology 16 (2007) 844-849. https://doi.org/10.1007/s11666-007-9106-8

N. Kumar, V. K. Choubey, Investigation of microstructure and Isothermal oxidation resistance of cermet HVOF coated on AISI316L at 900 °C, Results in Surfaces and Interfaces 14 (2024) 100173. https://doi.org/10.1016/j.rsurfi.2023.100173

K. L. Luthra, and H. S. Spacil, Impurity deposits in gas turbines from fuels containing sodium and vanadium, Journal of the electrochemical society 129(3) (1982) 649. https://doi.org/10.1149/1.2123941

S. P. Zhu, H. Z. Huang, W. Peng, H. K. Wang, S. Mahadevan, Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty, Reliability Engineering & System Safety 146 (2016) 1-12. https://doi.org/10.1016/j.ress.2015.10.002

B. Salehnasab, E. Poursaeidi, S. A. Mortazavi, G. H. Farokhian, Hot corrosion failure in the first stage nozzle of a gas turbine engine, Engineering Failure Analysis 60 (2016) 316-325. https://doi.org/10.1016/j.engfailanal.2015.11.057

S. Madhavan, Rajeev Jain, C. Sujatha, A. S. Sekhar, Vibration based damage detection of rotor blades in a gas turbine engine, Engineering Failure Analysis 46 (2014) 26-39. https://doi.org/10.1016/j.engfailanal.2014.07.021

D. Pradhan, G. S. Mahobia, K. Chattopadhyay, V. Singh, Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment, Journal of Alloys and Compounds 740 (2018) 250-263. https://doi.org/10.1016/j jallcom.2018.01.042

D. J. Baxter, K. Natesan, Breakdown of chromium oxide scales in sulfur-containing environments at elevated temperatures, Oxidation of metals 31 (1989) 305-323. https://doi.org/10.1007/BF00846691

B. A. Gordon, V. Nagarajan, Preliminary observations of the thermodynamic predictions of Fe-Cr-Ni alloys in coal gasifier environments, Oxidation of Metals 13 (1979) 197-202. https://doi.org/10.1007/BF00611979

M. F. Stroosnijder, W. J. Quadakkers, Review of high temperature corrosion of metals and alloys in sulphidizing/oxidizing environments II. Corrosion of alloys, High Temperature Technology 4(3) (1986) 141-151. https://doi.org/10.1080/02619180.1986.11753329

N. Eliaz, G. Shemesh, R. M. Latanision, Hot corrosion in gas turbine components, Engineering failure analysis 9(1) (2002) 31-43. https://doi.org/10.1016/S1350-6307(00)00035-2

N. Kumar, V. K. Choubey, Recent trends in coating processes on various AISI steel substrates, Journal of Materials Science 59(2) (2024) 395-422. https://doi.org/10.1007/s10853-023-09239-z

F. Pettit, Hot corrosion of metals and alloys, Oxidation of Metals 76 (2011) 1-21. https://doi.org/10.1007/s11085-011-9254-6

M. M. Barbooti,, S. H. Al-Madfai, H. J. Nassouri, Thermochemical studies on hot ash corrosion of stainless steel 304 and inhibition by magnesium sulphate, Thermochimica acta 126 (1988) 43-49. https://doi.org/10.1016/0040-6031(88)87248-4

K. Natesan, Corrosion-erosion behavior of materials in a coal-gasificationenvironment, Corrosion 32(9) (1976) 364-370. https://doi.org/10.5006/0010-9312-32.9.364

J. Congleton, W. Zheng, H. Hua, Stress corrosion cracking of annealed type 316 stainless steel in high-temperature water, Corrosion 46(8) (1990) 621-627. https://doi.org/10.1016/0010-938X(85)90010-1

A. Hendry, D. J. Lees, Corrosion of austenitic steels in molten sulphate deposits, Corrosion Science 20(3) (1980) 383-404. https://doi.org/10.1016/0010-938X(80)90007-4

N. Kumar, V. K. Choubey, Comparative evaluation of oxidation resistance of detonation gun-sprayed Al2O3-40% TiO2 coating on nickel-based superalloys at 800 °C and 900 °C, High Temperature Corrosion of Materials 99(5) (2023) 359-373. https://doi.org/10.1007/s11085-023-10157-3

N. Kumar, V. K. Choubey, Experimental investigation on hot corrosion, oxidation and microstructure of WC based cermet HVOF coating, High Temperature Corrosion of Materials 101 (2023) 413-432. https://doi.org/10.1007/s11085-023-10179-x

A. K. Koul, J. P. Immarigeon, R. V. Dainty, P. C. Patnaik, Degradation of high performance aero-engine turbine blades, in Advanced materials and coatings for combustion turbines, V. P. Swaminathan, N. S. Cheruvu, Eds., ASM International, Materials Park, OH, USA, 1994, p. 69-74. ISBN 9780871704870. https://books.google.co.in/books?id=19NSAAAAMAAJ

N. K. Mishra, N. Kumar, S. B. Mishra, Hot Corrosion Behaviour of Detonation Gun Sprayed Al2O3-40TiO2 Coating on Nickel Based Superalloys at 900° C. Indian Journal of Materials Science 2014 (2014). https://doi.org/10.1155/2014/453607

T. S. Sidhu, S. Prakash, R. D. Agrawal, Hot corrosion and performance of nickel-based coatings, Current Science 90(1) (2006) 41-47. https://www.jstor.org/stable/24089016

S. Topolska, Santina J. Labanowski, Corrosion of evaporator tubes in low emission steam boilers, Archives of Materials Science and Engineering 42(2) (2010) 85-92. http://www.amse.acmsse.h2.pl/vol42_2/4223.pdf

S. Ishigai, Steam power engineering: Thermal and hydraulic design principles, Cambridge University Press, 1999. ISBN 9780521135184

M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang, L. S. Wen, The preparation and hot corrosion resistance of gradient NiCoCrAlYSiB coatings, Surface and Coatings Technology 200(12-13) (2006) 3942-3949. https://doi.org/10.1016/j.surfcoat.2004.12.005

T. S. Sidhu, S. Prakash, R. D. Agrawal, Hot corrosion studies of HVOF NiCrBSi and Stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler, Surface and Coatings Technology 201(3-4) (2006) 1602-1612. https://doi.org/10.1016/j.surfcoat.2006.02.047

T. S. Sidhu, A. Malik, S. Prakash, R. D. Agrawal, Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni-and Fe-based superalloys at 800 C, Journal of Thermal Spray Technology 16 (2007) 844-849. https://doi.org/10.1007/s11666-007-9106-8

G. M. Liu, F. Yu, J. H. Tian, J. H. Ma, Influence of pre-oxidation on the hot corrosion of M38G super¬alloy in the mixture of Na2SO4-NaCl melts, Materials Science and Engineering A 496(1-2) (2008) 40-44. https://doi.org/10.1016/j. msea. 2008. 04. 046

E. Liu, Z. Zheng, X. Guan, J. Tong, L. Ning, Y. Yu, Influence of Pre-oxidation on the Hot Corrosion of DZ68 Superalloy in the Mixture of Na2SO4-NaCl, Journal of Materials Science & Technology 26(10) (2010) 895-899. https://doi.org/10.1016/S1005-0302(10)60143-0

S. Kamal, R. Jayaganthan, S. Prakash, High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900 C, Bulletin of Materials Science 33 (2010) 299-306. https://doi.org/10.1007/s12034-010-0046-4

W. Wang, C. Zhou, Hot corrosion behaviour of Nbss/Nb5Si3 in situ composites in the mixture of Na2SO4 and NaCl melts, Corrosion science 74 (2013) 345-352. https://doi.org/10.1016/j.corsci.2013.04.057

V. P. S. Sidhu, K. Goyal, R. Goyal, Comparative evaluation of hot corrosion resistance of 83WC-17CO and 86WC-10CO-4Cr coatings on some boiler steels in actual boiler in thermal power plant, Metallography, Microstructure, and Analysis 6 (2017) 512-518. https://doi.org/10.1007/s13632-017-0392-3

W. Zhou, K. Zhou, C. Deng, K. Zeng, Y. Li, Hot corrosion behaviour of HVOF-sprayed Cr3C2-NiCrMoNbAl coating, Surface and Coatings Technology 309 (2017) 849-859. https://doi.org/10.1016/j.surfcoat.2016. 10.076

Y. Qiao, J. Kong, X. Guo, Hot corrosion phenomena of Nb-Ti-Si based alloy and its silicide coating induced by different corrosive environments at 900° C, Ceramics International 44(7) (2018) 7978-7990. https://doi.org/10.1016/j.ceramint.2018.01.238

L. Wei, W. Shao, M. Li, C. Zhou, Hot corrosion behaviour of Mo-62Si-5B (at.%) alloy in different molten salts at 900 °C, Corrosion Science 158 (2019) 108099. https://doi.org/10.1016/j.corsci.2019.108099

J. A. Picas, M. Punset, E. Rupérez, S. Menargues, E. Martin, M. T. Baile, Corrosion mechanism of HVOF thermal sprayed WC-CoCr coatings in acidic chloride media, Surface and Coatings Technology 371 (2019) 378-388. https://doi.org/10.1016/j.surfcoat.2018.10.025

Y. Zhang, S. Hong, J. Lin, Y. Zheng, Influence of ultrasonic excitation sealing on the corrosion resistance of HVOF-sprayed nano-structured WC-CoCr coatings under different corrosive environments, Coatings 9(11) (2019) 724. https://doi.org/10.3390/coatings9110724

Z. Xu, W. Jinchu, Y. Zonghui, Z. Hui, P. Cong, C. Yajie, L. Xiaoquan, Hot Corrosion Behavior of Fe-Cr-Ni-Based Austenitic Heat-Resistant Steel Weld Metal in Na2SO4-NaCl Molten Salts at Different Temperatures, HighTemperature Corrosion of Materials 99(1) (2023) 117-132. https://doi.org/10.1007/s11085-022-10144-0

Y. S. Hwang, D. B. Lee, High-Temperature Oxidation of WC-20%TiC-10%Co Carbides, Advanced Materials Research 811 (2013) 93-97. https://doi.org/10.4028/www.scientific.net/AMR.811.93

M. S. Alam, A. K. Das, Hot corrosion behavior of plasma-sprayed WC-CoCr coatings on AISI 316L steel substrate in Na2SO4-25% NaCl salt environment, High Temperature Corrosion of Materials 99(5) (2023) 415-430. https://doi.org/10.1007/s11085-023-10162-6

N. Kumar, M. S. Alam, V. Mishra, H. Vasudev, P. C. Yadav, V. K. Choubey, A comparative investigation of the effects of temperature on the oxidation resistance of high-velocity oxy-fuel coating on AISI316L, Physica Scripta 99 (2024) 055031. 10.1088/1402-4896/ad3c7a

I. Gurrappa, Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments, Oxidation of Metals 51 (1999) 353-382 https://doi.org/10.1023/A:1018831025272

C. W. Lee, J. H. Han, J. Yoon, M. C. Shin, S. I. Kwun, A study on powder mixing for high fracture toughness and wear resistance of WC-Co-Cr coatings sprayed by HVOF, Surface and Coatings Technology 204 (2010) 2223-2229. https://doi.org/10.1016/j.surfcoat.2009.12.014

N. Kumar, V. K. Choubey, Effect of WC-Co and 86WC-10Co-4Cr coatings on type-II hot corrosion behaviour & microstructure characteristics at 650 degree celsius, Surface and Coatings Technology 469 (2023) 129812. https://doi.org/10.1016/j.surfcoat.2023.129812

M. S. Alam, A. K. Das, Advancement in cermet based coating on steel substrate, Materials Today: Proceedings 56 (2022) 805-810.https://doi.org/10.1016/j.matpr.2022.02.260

T. Hodgkiess, A. Neville, S. Shrestha, Electrochemical and mechanical interactions during erosion-corrosion of a high-velocity oxy-fuel coating and a stainless steel, Wear 233 (1999) 623-634. https://doi.org/10.1016/S0043-1648(99)00246-X

V. A. de Souza, A Neville, Corrosion and erosion damage mechanisms during erosion-corrosion of WC-Co-Cr cermet coatings, Wear 255(1-6) (2003) 146-156. https://doi.org/10.1016/S0043-1648(03)00210-2

M. Kumar, H. Singh, N. Singh, Fire side erosion-corrosion protection of boiler tubes by nano-structured coatings, Materials and Corrosion 66(7) (2015) 695-709. https://doi.org/10.1002/maco.201407954

A. R. Hemmati, S. M. Soltanieh, S. M. Masoudpanah, On the interaction between erosion and corrosion in chromium carbide coating, Journal of Bio-and Tribo-Corrosion 4 (2018) 10. https://doi.org/10.1007/s40735-018-0128-1

H. P. Thi, T. N. Van, T. A. Nguyen, L. P. Thi, T. D. Bich, C. L. Quoc, Cr3C 2-25NiCr cermet coating: Preparation, PTFE sealant, wear and corrosion resistances, Journal of Thermal Spray Technology 30 (2021) 716-724. https://doi.org/10.1007/s11666-021-01155-5

X. Xie, B. Yin, F. Yin, X. Ouyang, X. Ouyang, Corrosion behavior of FeB-30 wt. % Al0. 25FeNiCoCr cermet coating in liquid zinc, Coatings 11(6) (2021) 622. https://doi.org/10.3390/coatings11060622

S. Q Li, Q. L. Li, S. L. Gong, C. Wang, Researching for corrosion-resistance performance of laser-hybrid plasma spraying NiCr-Cr3C2 coating, Physics Procedia 18 (2011) 211-215. https://doi.org/10.1016/j.phpro.2011.06.083

C. Jiang, W. Liu, G. Wang, Y. Chen, Y. Xing, C. Zhang, M. Dargusch, The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings, Surface Engineering 34(8) (2018) 634-639. https://doi.org/10.1080/02670844.2017.1319647

M. A. Zavareh, A. A. D. M. Sarhan, B. B. A. Razak, W. J. Basirun, Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications, Ceramics International 40(9) (2014) 14267-14277. https://doi.org/10.1016/j.ceramint.2014.06.017

K. Mathivanan, D. Thirumalaikumarasamy, P. Thirumal, M. Ashokkumar, Investigate the corrosion properties of stellite coated on AZ91D alloy by plasma spray technique, Thermal Science 26(2) (2022) 911-920. https://doi.org/10.2298/TSCI200722209K

Published

16-06-2024 — Updated on 16-06-2024

How to Cite

Alam, M. S., Kumar, N., & Das, A. K. (2024). Behaviour of thermally sprayed coating for hot corrosion applications: Review paper. Journal of Electrochemical Science and Engineering, 14(4), 459–472. https://doi.org/10.5599/jese.2324

Issue

Section

Advanced coatings