Anticorrosive polystyrene coatings modified with tannic acid on zinc and steel substrates

Original scientific paper

Authors

  • Julia Both Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0001-6116-519X
  • Gabriella Stefania Szabo Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0002-7083-9106
  • Gabriel Katona Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0003-3508-0023
  • Liana Maria Mureșan Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0002-2891-2947

DOI:

https://doi.org/10.5599/jese.1293

Keywords:

Polystyrene coatings, corrosion protection, tannic acid, mesoporous silica nanocontainers
Graphical Abstract

Abstract

Polystyrene (PS) polymer layers were prepared by the sol-gel method and studied as anticorrosive barrier layers on carbon steel and zinc substrates. To increase the corrosion resistance of the coatings, two different approaches were considered: (i) the use of mesoporous silica-nano­containers impregnated with a corrosion inhibitor (tannic acid) introduced into the polystyrene matrix and (ii) direct impregnation of polystyrene coatings with the same corrosion inhibitor. The impregnated nanocontainers were characterized by transmission electron microscopy. The thickness and the adhesion of the coatings were measured, and their corrosion behavior was investigated by electrochemical impedance spectroscopy. Results showed that the used inhibitor slightly decreased adhesion, but significantly increased the corrosion resistance of the coatings. The direct introduction of tannic acid into the polymer matrix offers higher corrosion resistance than in the case of polystyrene coatings doped with impregnated silica nanocontainers.

Downloads

Download data is not yet available.

References

M. G. Fontana, N. D. Greene, Corrosion Engineering, Print book, Tata McGraw-Hill, New Delhi, India, 2005. ISBN-10: 0070214638

R. G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Progress in Organic Coatings 47 (2003) 174-182. https://doi.org/10.1016/j.porgcoat.2003.08.003

J. L. Fang, Y. Li, X. R. Ye, Z. W. Wang, Q. Liu, Corrosion 49 (1993) 266-271. https://doi.org/10.5006/1.3316048

G. Szabó, E. Albert, J. Both, L. Kócs, G. Sáfrán, A. Szöke, Z. Hórvölgyi, L. M. Mureşan, Surfaces and Interfaces 15 (2019) 216-223. https://doi.org/10.1016/j.surfin.2019.03.007

E. Wierzbicka, B. Vaghefinazari, S. V Lamaka, M. L. Zheludkevich, M. Mohedano, Corrosion Science 180 (2021) 109189. https://doi.org/10.1016/j.corsci.2020.109189

H. Ma, J. Huang, Stereoselective Polymerization with Single-Site Catalysis 29 (2007) 363-398. https://doi.org/10.1002/14356007.a21

G. Ahmetli, H. Deveci, A. Altun, R. Kurbanli, Progress in Organic Coatings 70 (2011) 9-15. https://doi.org/10.1016/j.porgcoat.2010.09.010

C. de Souza, R. L. Perez Teixeira, J. C. De Lacerda, C .R. Ferreira, C. H. B. Soares Teixeira, V. T. Signoretti, Polimeros 28 (2018) 226-230. https://doi.org/10.1590/0104-1428.015816

F. Cotting, I. V. Aoki, Surface and Coatings Technology 303 (2016) 310-318. https://doi.org/10.1016/j.surfcoat.2015.11.035

B. Davó, J. J. De Damborenea, Electrochimica Acta 49 (2004) 4957-4965. https://doi.org/10.1016/j.electacta.2004.06.008

M. M. Mennucci, E. P. Banczek, P. R. P. Rodrigues, I. Costa, Cement and Concrete Composites 31 (2009) 418-424. https://doi.org/10.1016/j.cemconcomp.2009.04.005

Y. Jia, N. Ren, H. Yue, J. Deng, Y. Liu, Pigment & Resin Technology 45(3) (2016) 191-198. https://doi.org/10.1108/PRT-12-2014-0115

W. Xu, E. Han, Z. Wang, Journal of Materials Science Technology 35 (2019) 64-75. https://doi.org/10.1016/j.jmst.2018.09.001

Y. Zhao, W. Zhang, L. P. Liao, H. M. Wang, W. J. Li, Physics Procedia 18 (2011) 216-221. https://doi.org/10.1016/j.phpro.2011.06.084

M. Yeganeh, S. M. Marashi, N. Mohammadi, International Journal of Nanoscience and Nanotechnology 14 (2018) 143-151. http://www.ijnnonline.net/article_31222_802cf3b5ac5eb0991fd7c3ea52fa4cbe.pdf

F. Maia, M. G. S. Ferreira, Nanoscale 4 (2012) 1287-1298. https://doi.org/10.1039/c2nr11536k

B. Qian, M. Michailidis, M. Bilton, T. Hobson, Z. Zheng, D. Shchukin, Electrochimica Acta 297 (2019) 1035-1041. https://doi.org/10.1016/j.electacta.2018.12.062

X. Yao, X. Zheng, J. Zhang, K. Cai, RSC Advances 6 (2016) 76473-76481. https://doi.org/10.1039/c6ra15773d

O. Kurniawan, B. Soegijono, e-Journal of Surface Science and Nanotechnology 18 (2020) 62-69 https://doi.org/10.1380/ejssnt.2020.62

E. Kusmierek, E. Chrzescijanska, Materials and Corrosion 66(2) (2015) 169-174 https://doi.org/10.1002/maco.201307277

Downloads

Published

07-06-2022

How to Cite

Both, J., Szabo, G. S., Katona, G., & Mureșan, L. M. (2022). Anticorrosive polystyrene coatings modified with tannic acid on zinc and steel substrates: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 721–730. https://doi.org/10.5599/jese.1293

Issue

Section

Coatings