Evaluation of paint systems on A36 steel through electro-chemical techniques: Corrosion resistance of container tanks

Original scientific paper

  • Hugo Canahua Loza Universidad Nacional de San Agustín de Arequipa, Calle Santa Catalina 117, Arequipa 04001, Perú https://orcid.org/0000-0002-4351-1340
  • Paul Huanca Zuñiga Universidad Nacional de San Agustín de Arequipa, Calle Santa Catalina 117, Arequipa 04001, Perú https://orcid.org/0000-0003-2513-3494
  • Milagros Minga Adco Universidad Nacional de San Agustín de Arequipa, Calle Santa Catalina 117, Arequipa 04001, Perú
  • Carolyne Vizcarra Universidad Nacional de San Agustín de Arequipa, Calle Santa Catalina 117, Arequipa 04001, Perú
  • Leslie Canahua Sosa Universidad Nacional de San Agustín de Arequipa, Calle Santa Catalina 117, Arequipa 04001, Perú
  • María Escudero Department of Materials Engineering, Degradation and Durability National Center for Metallurgical Research (CENIM-CSIC), Gregorio del Amo 8, 28040 Madrid, Spain https://orcid.org/0000-0002-2181-448X
Keywords: Plate steel, seawater storage tank, epoxy coating, electrochemical impedance spectroscopy
Graphical Abstract

Abstract

In this research work, the corrosion resistance of plate steel used in the construction of cylindrical container tanks of seawater was evaluated. These container tanks are usually used for fighting fires on the coast of the Arequipa-Peru region, where the shortage of drinking water is significant. The study was based on immersion tests of 2 × 2 cm square test plates in 3.5 wt.% NaCl solution. Five paint systems were studied, varying only in the primers: P1-860 (inorganic zinc silicate); P1-ZC (epoxy-zinchromate); P1-850 (organic rich in zinc); P1-600 (reinforced inorganic zinc) and P1-SP1000 (high solids epoxy-amine). All systems consisted of a primer coat, an epoxy middle coat and a polyurethane topcoat. To characterize the behaviour of each system, the electrochemical impedance spectroscopy (EIS) was mostly used. In addition, the scanning Kelvin probe (SKP) and scanning electro­che­mical microscopy (SECM) were used as local techniques. The first three paint systems (P1-860, P1-ZC and P1-850) showed an invariable value of impedance modulus up to 3360 h of immersion in NaCl. The last two paint systems (P1-600 and P1-SP1000) showed a decrease in impedance modulus by more than one order of magnitude. This research provides a clear contribution of results obtained by global electrochemical techniques such as EIS, estab­lishing excellent tools for monitoring the performance of organic anticorrosive coatings.

Downloads

Download data is not yet available.

References

L. M. Ocampo, A. Guzmán, Dyna 78 (2011) 87-95. https://bit.ly/3if5cyV

J. T. Zhang, J. M. Hu, J. Q. Zhang, C. N. Cao, Progress in Organic Coatings 51(2) (2004) 145-151. https://doi.org/10.1016/j.porgcoat.2004.08.001

R. Pizarro Cabrera, Revista Peruana de Química e Ingeniería Química 9 (1) (2006) 25-32. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/4043

M. W. Kendig. R. G. Buchheit, Corrosion 59 (5) (2003) 379-400. https://doi.org/10.5006/1.3277570

J. J. Santana, J. E. González, J. Morales, S. González, R. M. Souto, International Journal of Electrochemical Science 7 (2012) 6489-6500. http://hdl.handle.net/10553/44569

E. Armelin, R. Oliver, F. Liesa, J. I. Iribarren, F. Estrany, C. Alemán, Progress in Organic Coatings 59 (1) (2007) 46-52. https://doi.org/10.1016/j.porgcoat.2007.01.013

E. Armelin, C. Alemán, J. I. Iribarren, Progress in Organic Coatings 65 (1) (2009) 88-93. https://doi.org/10.1016/j.porgcoat.2008.10.001

X. Chen, S. F. Wen, T. Feng, X. Yuan, Progress in Organic Coatings 139 (2020) 105374. https://doi.org/10.1016/j.porgcoat.2019.105374

Z. Sanaei, B. Ramezanzadeh, T. Shahrabi, Applied Surface Science 454 (2018) 1-15. https://doi.org/10.1016/j.apsusc.2018.05.077

M. Tabatabaei majd, R. Naderi, B. Ramezanzadeh, Progress in Organic Coatings 138 (2020) 105380. https://doi.org/10.1016/j.porgcoat.2019.105380

ASTM 4511, Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers, 2009. https://bit.ly/3ulC8ur

I. Díaz, B. Chico, D. de la Fuente, J. Simancas, J. M. Vega, M. Morcillo, Progress in Organic Coatings 69 (3) (2010) 278-286. https://doi.org/10.1016/j.porgcoat.2010.06.007

W. Melitz, J. Shen, A. C. Kummel, S. Lee, Surface Science Reports 66 (1) (2011) 1-27. https://doi.org/10.1016/j.surfrep.2010.10.001

S. S. Jamali, S. E. Moulton, D. E. Tallman, M. Forsyth, J. Weber, G. G. Wallace, Corrosion Science 86 (2014) 93-100. https://doi.org/10.1016/j.corsci.2014.04.035

X. J. Raj, T. Nishimura, ISIJ International 54 (2014) 693-699. https://doi.org/10.2355/isijinternational.54.693

J. J. Suay, M. T. Rodríguez, K. A. Razzaq, J. J. Carpio, J. J. Saura, Progress in Organic Coatings 46 (2) (2003) 121-129. https://doi.org/10.1016/S0300-9440(02)00219-9

Published
05-04-2022
Section
Electrochemical Engineering