Interaction between albumin originating from persons with uncontrolled diabetes mellitus type 2 and food antioxidants

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2892

Keywords:

(Dihydro)lipoic acid, glucose metabolism, oleuropein, resveratrol, transport/activity of antioxidants

Abstract

Background and Purpose: Dietary interventions are a cornerstone in the management of diabetes mellitus type 2. The efficiency, however, depends on pharmacokinetic factors, including interaction of food ingredients with plasma proteins. The concept of this study was to investigate binding effects of three pronounced antioxidants present in the Mediterranean diet: resveratrol, (dihydro)lipoic acid and oleuropein, with albumin isolated from persons with diabetes (HbA1c 63±7 mmol/mol, or 7.9±0.6%) and healthy persons, carrying its intrinsic ligands. Experimental approach: Spectrofuorometric analysis, native electrophoresis and immunoblotting were performed with albumin before and after the interaction with antioxidants. Key results: Fluorescence spectra of the protein from two study groups were similar, whereas a spectrum of methylglyoxal-modified albumin (in vitro oxidised) was different. Calculated binding constants were also similar for two study groups for all three ligands. Kinetic fluorescence measurements revealed significantly altered activity of albumin-bound (dihydro)lipoic acid in persons with diabetes compared to healthy individuals, and no significant difference in the activity of resveratrol in expressing antioxidant protection of albumin upon its exposure to oxidative stress. Conclusions: Although the findings should be further validated using other antioxidants and glycated albumin derived from persons stratified according to the severity of a disease, the results have documented that in vitro methylglyoxal-oxidised albumin, routinely employed for diabetes-simulated investigations, was shown not to reflect this pathophysiological condition properly and not to be adequate for the assessment of relevant nutritional/biochemical potential of food antioxidants.

Downloads

Download data is not yet available.

References

[1] International Diabetes Federation (IDF) Atlas. 2021. https://idf.org/about-diabetes/diabetes-facts-figures/. (accessed March 2025).

[2] A. Caturano, M.G. D'Angelo, A. Mormone, V. Russo, M. Carotenuto, T Salvatore, R. Galiero, L. Rinaldi, E. Vetrano, R. Marfella, M. Monda, A. Giordano, F.C. Sasso. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology 45 (2023) 6651-6666. https://doi.org/10.3390/cimb45080420 DOI: https://doi.org/10.3390/cimb45080420

[3] J.S. Bhatti, A. Sehrawat, J. Mishra, I.S. Sidhu, U. Navik, N. Khullar, S. Kumar, G.K. Bhatti, P.H. Reddy. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine 184 (2022) 114-134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019 DOI: https://doi.org/10.1016/j.freeradbiomed.2022.03.019

[4] J. Jeevanandam, V.L.S. Prasad Burra, N.T. Saraswathi. Conformational variation of site specific glycated albumin: A molecular dynamics approach. Computers in Biology and Medicine 164 (2023) 107276. https://doi.org/10.1016/j.compbiomed.2023.107276 DOI: https://doi.org/10.1016/j.compbiomed.2023.107276

[5] P. Rondeau, E. Bourdon. The glycation of albumin: Structural and functional impacts. Biochimie 93 (2011) 645-658. https://doi.org/10.1016/j.biochi.2010.12.003 DOI: https://doi.org/10.1016/j.biochi.2010.12.003

[6] S. Sittiwanichai, D. Japrung, T. Mori, P. Pongprayoon. Structural and dynamic alteration of glycated human serum albumin in Schiff base and Amadori adducts: A molecular simulation study. Journal of Physical Chemistry B. 127 (2023) 5230-5240. https://doi.org/10.1021/acs.jpcb.3c02048 DOI: https://doi.org/10.1021/acs.jpcb.3c02048

[7] D.F. Romagnolo, O.I. Selmin. Mediterranean diet and prevention of chronic diseases. Nutrition Today 52 (2017) 208-222. https://doi.org/10.1097/NT.0000000000000228 DOI: https://doi.org/10.1097/NT.0000000000000228

[8] V.B. Jovanović, A.Z. Penezić-Romanjuk, I.D. Pavićević, J.M. Aćimović, L.M. Mandić. Improving the reliability of human serum albumin-thiol group determination. Analytical Biochemistry 439 (2013) 17-22. https://doi.org/10.1016/j.ab.2013.03.033. DOI: https://doi.org/10.1016/j.ab.2013.03.033

[9] S. Koike, Y. Saito, Y. Ogasawara. Novel fluorometric assay of antiglycation activity based on methylglyoxal-induced protein carbonylation. Antioxidants 12 (2023) 2030. https://doi.org/10.3390/antiox12122030 DOI: https://doi.org/10.3390/antiox12122030

[10] K. Radomska, M. Wolszczak. Spontaneous and ionizing radiation-induced aggregation of human serum albumin: dityrosine as a fluorescent probe. International Journal of Molecular Sciences 23 (2022) 8090. https://doi.org/10.3390/ijms23158090 DOI: https://doi.org/10.3390/ijms23158090

[11] A. Azaj, S. Anas, S.K. Mohd, M.H. Fohad, B. Bilqees. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. International Journal of Biological Macromolecules 113 (2018) 269-276. https://doi.org/10.1016/j.ijbiomac.2018.02.137 DOI: https://doi.org/10.1016/j.ijbiomac.2018.02.137

[12] Y.M. Muraoka, A. Benatti Justino, D. Carvalho Caixeta, J. Silveira Queiroz, R. Sabino-Silva, F. Salmen Espindola. Fructose and methylglyoxal-induced glycation alters structural and functional properties of salivary proteins, albumin and lysozyme. PLoS One 17 (2022) e0262369. https://doi.org/10.1371/journal.pone.0262369 DOI: https://doi.org/10.1371/journal.pone.0262369

[13] Y. Xie, J. Xiao, G. Kai, X. Chen. Glycation of plasma proteins in type II diabetes lowers the non-covalent interaction affinities for dietary polyphenols. Integrative Biology 4 (2012) 502-507. https://doi.org/10.1039/c2ib00185c DOI: https://doi.org/10.1039/c2ib00185c

[14] E. Sutkowska, I. Fecka, D. Marciniak, K. Bednarska, M. Sutkowska, K. Hap. Analysis of methylglyoxal concentration in a group of patients with newly diagnosed prediabetes. Biomedicines 11 (2023) 2968. https://doi.org/10.3390/biomedicines11112968 DOI: https://doi.org/10.3390/biomedicines11112968

[15] C.E. Guthrow, M.A. Morris, J.F. Day, S.R. Thorpe, J.W. Baynes. Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus. Proceedings of the National Academy of Sciences U.S.A. 76 (1979) 4258-4261. https://doi.org/10.1073/pnas.76.9.4258 DOI: https://doi.org/10.1073/pnas.76.9.4258

[16] K. Nishi, K. Yamasaki, M. Otagiri. Serum albumin, lipid and drug binding. Subcellular Biochemistry 94 (2020) 383-397. https://doi.org/10.1007/978-3-030-41769-7_15 DOI: https://doi.org/10.1007/978-3-030-41769-7_15

[17] C.N. N'soukpoe-Kossi, C. St-Louis, M. Beauregard, M. Subirade, R. Carpentier, S. Hotchandani, H.A. Tajmir-Riahi. Resveratrol binding to human serum albumin. Journal of Biomolecular Structure and Dynamics 24 (2006) 277-283. https://doi.org/10.1080/07391102.2006.10507120 DOI: https://doi.org/10.1080/07391102.2006.10507120

[18] I.D. Pavićević, V.B. Jovanović, M.M. Takić, A.Z. Penezić, J.M. Aćimović, L.M. Mandić. Fatty acids binding to human serum albumin: Changes of reactivity and glycation level of Cysteine-34 free thiol group with methylglyoxal. Chemico-Biological Interactions 224 (2014) 42-50. https://doi.org/10.1016/j.cbi.2014.10.008 DOI: https://doi.org/10.1016/j.cbi.2014.10.008

[19] A.I.S. Sobczak, C.A. Blindauer, A.J. Stewart. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients 11 (2019) 2022. https://doi.org/10.3390/nu11092022 DOI: https://doi.org/10.3390/nu11092022

[20] M. Su, W. Zhao, S. Xu, J. Weng. Resveratrol in treating diabetes and its cardiovascular complications: A review of its mechanisms of action. Antioxidants 11 (2022) 1085. https://doi.org/10.3390/antiox11061085 DOI: https://doi.org/10.3390/antiox11061085

[21] J.M. Smoliga, J.A. Baur, H.A. Hausenblas. Resveratrol and health - A comprehensive review of human clinical trials. Molecular Nutrition and Food Research 55 (2011) 1129-1141. https://doi.org/10.1002/mnfr.201100143 DOI: https://doi.org/10.1002/mnfr.201100143

[22] V. Ciddi, D. Dodda. Therapeutic potential of resveratrol in diabetic complications: In vitro and in vivo studies. Pharmacological Reports 66 (2014) 799-803. https://doi.org/10.1016/j.pharep.2014.04.006 DOI: https://doi.org/10.1016/j.pharep.2014.04.006

[23] N. Haugaard, R.M. Levin. Regulation of the activity of choline acetyl transferase by lipoic acid. Molecular and Cellular Biochemistry 213 (2000) 61-63. https://doi.org/10.1023/a:1007156732662 DOI: https://doi.org/10.1023/A:1007156732662

[24] S. Sanajou, A. Yirün, G. Demirel, D.A. Çakir, G. Şahin, P. Erkekoğlu, T. Baydar. Antioxidant dihydrolipolic acid protects against in vitro aluminum-induced toxicity. Journal of Applied Toxicology 43 (2023) 1793-1805. https://doi.org/10.1002/jat.4513 DOI: https://doi.org/10.1002/jat.4513

[25] N. Gligorijević, V. Šukalović, S. Minić, G. Miljuš, O. Nedić, A. Penezić, A. Physicochemical characterisation of dihydro-alpha-lipoic acid interaction with human serum albumin by multi-spectroscopic and molecular modelling approaches. Journal of the Serbian Chemical Society 86 (2021) 795-807. https://doi.org/10.2298/JSC210420041G DOI: https://doi.org/10.1101/2020.10.16.342121

[26] S.H. Omar. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica 78 (2010) 133-154. https://doi.org/10.3797/scipharm.0912-18 DOI: https://doi.org/10.3797/scipharm.0912-18

[27] J. He, Q. Wang, L. Zhang, X. Lin, H. Li. Docking simulations and spectroscopy of the interactions of ellagic acid and oleuropein with human serum albumin. Journal of Luminescence 154 (2014) 578-583. https://doi.org/10.1016/j.jlumin.2014.06.002 DOI: https://doi.org/10.1016/j.jlumin.2014.06.002

[28] M. Roche, C. Dufour, M. Loonis, M. Reist, P-A. Carrupt, O. Dangles. Olive phenols efficiently inhibit the oxidation of serum albumin bound linoleic acid and butyrylcholine esterase. Biochimica Biophysica Acta - General Subject 1790 (2009) 240-248. https://doi.org/10.1016/j.bbagen.2009.01.007 DOI: https://doi.org/10.1016/j.bbagen.2009.01.007

[29] N. Shaklai, R.L. Garlick, H.F. Bunn. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. Journal of Biological Chemistry 259 (1984) 3812-3817. https://doi.org/10.1016/j.saa.2015.01.120 DOI: https://doi.org/10.1016/S0021-9258(17)43168-1

[30] N. Wu, T. Liu, M. Tian, C. Liu, S. Ma, H. Cao, H. Bian, L. Wang, Y. Feng, J. Qi. Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’ (Review). Molecular Medicine Reports 29 (2024) 24. https://doi.org/10.3892/mmr.2023.13147 DOI: https://doi.org/10.3892/mmr.2023.13147

[31] R. Ghosh, N. Kishore. Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions. Biochimie 193 (2022) 16-37. https://doi.org/10.1016/j.biochi.2021.10.008 DOI: https://doi.org/10.1016/j.biochi.2021.10.008

[32] A. Shevtsova, I. Gordiienko, V. Tkachenko, G. Ushakova. Ischemia-modified albumin: Origins and clinical implications. Disease Markers 2021 (2021) 9945424. https://doi.org/10.1155/2021/9945424 DOI: https://doi.org/10.1155/2021/9945424

[33] R.S. da Cunha, C.A.B. Azevedo, C.A. Falconi, F.F. Ruiz, S. Liabeuf, M.S. Carneiro-Ramos, A.E.M. Stinghen. The interplay between uremic toxins and albumin, membrane transporters and drug interaction. Toxins 14 (2022) 177. https://doi.org/10.3390/toxins14030177 DOI: https://doi.org/10.3390/toxins14030177

[34] A.G. Soudahome, A. Catan, P. Giraud, S. Assouan Kouao, A. Guerin-Dubourg, X. Debussche, N. Le Moullec, E. Bourdon, S.B. Bravo, B. Paradela-Dobarro, E. Alvarez, O. Meilhac, P. Rondeau, J. Couprie. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. Journal of Biological Chemistry 293 (2018) 4778-4791. https://doi.org/10.1074/jbc.M117.815274 DOI: https://doi.org/10.1074/jbc.M117.815274

[35] O. Nedić, A. Penezić, S. Minić, M. Radomirović, M. Nikolić, T. Ćirković Veličković, N. Gligorijević. Food antioxidants and their interaction with human proteins. Antioxidants 12 (2023) 815. https://doi.org/10.3390/antiox12040815 DOI: https://doi.org/10.3390/antiox12040815

[36] E.D. Cömert, V. Gökmen. Antioxidants bound to an insoluble food matrix: their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety 16 (2017) 382-399. https://doi.org/10.1111/1541-4337.12263 DOI: https://doi.org/10.1111/1541-4337.12263

Published

29-09-2025

Issue

Section

Pharmaceutical and biomedical analysis

How to Cite

Interaction between albumin originating from persons with uncontrolled diabetes mellitus type 2 and food antioxidants: Original scientific article. (2025). ADMET and DMPK, 2892. https://doi.org/10.5599/admet.2892

Funding data

Similar Articles

1-10 of 223

You may also start an advanced similarity search for this article.