Application of the quadratic logistic differential equation for the rationalization of methanol electrooxidation dynamics
DOI:
https://doi.org/10.5599/jese.340Keywords:
Logistic Differential Equation, Feedback, Methanol, Electrocatalysis, Fuel CellAbstract
The electrooxidation of methanol in both acidic and alkaline media on poly-crystalline platinum under the regime of cyclic voltammetry is analyzed by application of quadratic logistic equation. The current-charge curves in the anodic cycles fit the logistic differential equation reasonably well and are accounted on the basis of the non-linearity of the kinetics and the effect of positive feedback. In the reverse cycle however, no fit is observed, presumably due to the lack of correlation between the net faradaic current and the surface charge of adsorbates.
Downloads
References
L. Lin, Q. Zhu, A. Xu, Prog. Chem. 27 (2015) 1147-1157. http://dx.doi.org/10.1016/j.nanoen.2013.06.009
H. Bahrami, A. Faghri, J. Power Sources 230 (2013) 303-320. http://dx.doi.org/10.1016/j.jpowsour.2012.12.009
H. Hoster, T. Iwasita, H. Baumgartner, W. Vielstich, Phys. Chem. Chem. Phys. 3 (2001) 337-346. http://dx.doi.org/10.1039/B004895J
W. F. Lin, P. A. Christensen, A. Hamnet, Phys. Chem. Chem. Phys. 3 (2001) 3312-3319. http://dx.doi.org/10.1039/B102699M
Z. Tang, G. Lu, Prog. Chem. 19 (2007) 1301-1312. http://www.progchem.ac.cn/EN/Y2007/V19/I9/1301
J. M. Leger, J. Appl. Electrochem. 31 (2001) 767-771. http://dx.doi.org/10.1023/A:1017531225171
H. Varela, R. M. Torresi, E. R. Gonzalez, Quim. Nova 25 (2002) 99-106. http://dx.doi.org/10.1590/S0100-40422002000100017
R. M. Torresi, S. I. C. de Torresi, E. R. Gonzalez, J. Electroanal. Chem. 461 (1999) 161-166. http://dx.doi.org/10.1016/S0022-0728(98)00069-2
E. R. Gonzalez, J. Electrochem. Soc. 143 (1996) L113-L115. http://dx.doi.org/10.1149/1.1836893
S.N. Rasband, Chaotic dynamics of nonlinear systems, Wiley, New York, 1990.
K. Malek, F. Gobal, Synth. Met. 113 (2000) 167-171. http://dx.doi.org/10.1016/S0379-6779(00)00194-6
A. Bandura, American Psychologist 37 (1982) 747-755. http://psycnet.apa.org/doi/10.1037/0003-066X.37.7.747
A. Hamnett, Catal. Today 38 (1997) 445-457. http://dx.doi.org/10.1016/S0920-5861(97)00054-0
R. Manoharan, J. Prabhuram, J. Power Sources 96 (2001) 220-225. http://dx.doi.org/10.1016/S0378-7753(00)00683-2
J. Lee, C. Eickes, M. Eiswirth, G. Ertl, Electrochim. Acta 47 (2002) 2297-2301. http://dx.doi.org/10.1016/S0013-4686(02)00075-0
B.E. Conway, T.C. Liu, Langmuir 6 (1990) 268-276. http://dx.doi.org/10.1021/la00091a044
S. Chen, M. Schell, J. Electroanal. Chem. 478 (1999) 108-117. http://dx.doi.org/10.1016/S0022-0728(99)00421-0
R. Parsons, T. VanderNoot, J. Eelctroanal. Chem. 257 (1988) 9-45. http://dx.doi.org/10.1016/0022-0728(88)87028-1
T. Iwasita, W. Vielstich, E. Santos, J. Electroanal. Chem. 229 (1987) 367-376. http://dx.doi.org/10.1016/0022-0728(87)85153-7
B. Beden, F. Hahn, S. Juanto, C. Lamy, J. M. Leger, J. Electroanal. Chem. 225 (1987) 215-225. http://dx.doi.org/10.1016/0022-0728(87)80015-3
S. Wasmus, A. Kuver, J. Electroanal. Chem. 461 (1999) 14-31. http://dx.doi.org/10.1016/S0022-0728(98)00197-1
H. A. Gasteiger, N. Markovic, P.N. Ross, E. J. Cairns, J. Phys. Chem. 97 (1993) 12020-12029. http://pubs.acs.org/doi/abs/10.1021/j100148a030
V. J. Kwasniewski, L. D. Schmidt, Surf. Sci. 274 (1992) 329-340. http://dx.doi.org/10.1016/0039-6028(92)90838-W
T. Kobayashi, P. K. Babu, L. Gancs, J. H. Chung, E. Oldfield, A. Wieckowski, J. Am. Chem. Soc. 127 (2005) 14164-14165. http://dx.doi.org/10.1021/ja0550475
P. K. Babu, J. H. Chung, S. T. Kuk, T. Kobayashi, E. Oldfield, A. Wieckowski, J. Phys. Chem. 109 (2005) 2474-2477. http://dx.doi.org/10.1021/jp040729k
R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press, Oxford, 2000.
M. Schell, X. Cai, Electrochim. Acta 38 (1993) 519-527. http://dx.doi.org/10.1016/0013-4686(93)85007-L


