Comparative study between synthetic and dairy wastewaters in single chamber microbial fuel cell for power generation

Original scientific paper

  • Payel Choudhury Department of Bioengineering, National Institute of Technology Agartala, Agartala-799046, India https://orcid.org/0000-0002-9538-518X
  • Ria Majumdar Department of Civil Engineering, National Institute of Technology Agartala, Agartala-799046, India https://orcid.org/0000-0002-5971-2219
  • Tarun Kanti Bandyopadhyaya Department of Chemical Engineering, National Institute of Technology Agartala, Agartala-799046, India
Keywords: Green technology, microbial fuel cell, voltage generation, synthetic wastewater, dairy wastewater
Graphical Abstract

Abstract

To investigate the performance of microbial fuel cell (MFC) with a single-chamber membrane, Pseudomonas aeruginosa is used as a biocatalyst for various synthetic wastewaters rich in carbohydrate and is compared with real dairy wastewater in this experiment. Therefore, the choice of appropriate carbon, nitrogen, NaCl, inoculum content, temperature, and pH process parameters used for preparing synthetic wastewater was agreed upon by one-variable-at-a time approach. Maximum level of voltage generation attained from the synthetic wastewater was 485 mV when supple­mented with 1.5 % of lactose as a source of carbon, 0.3 % of ammonium chloride as a decent nitrogen source, 0.03 % of NaCl, inoculum concentration of 3 %, the temperature at 37 oC and pH 7. On the other hand, the maximum voltage attained with real dairy wastewater was 561 mV with high chemical oxygen demand (COD) value of 801 mg l-1. The maximum power density obtained from dairy wastewater was 73.54 mW m-2. High voltage achieved for MFC operating with real dairy wastewater suggests that it can be used not only for the industrial application to generate more renewable power, but also for the wastewater treatment carried out at the same time.

Downloads

Download data is not yet available.

References

A. T. Hoang, V. V. Pham, X. P. Nguyen, Journal of Cleaner Production 305 (2021) 127161. https://doi.org/10.1016/j.jclepro.2021.127161

C. Koroneos, T. Spachos, N. Moussiopoulos, Renewable Energy 28(2) (2003) 295-310. https://doi.org/10.1016/S0960-1481(01)00125-2

A. Adesina, P. Awoyera, Utilization of Biomass Energy in Cement Production: A Pathway Towards Sustainable Infrastructure, in Renewable Energy and Sustainable Buildings. Innovative Renewable Energy, A. Savigh (Ed.), Springer, Cambridge, UK, 2020, p 791. https://doi.org/10.1007/978-3-030-18488-9_65

S. E. Hosseini, M. A. Wahid, International Journal of Energy Research 44(6) (2020) 4110-4131. https://doi.org/10.1002/er.4930

S. Z. Abbas, M. Rafatullah, N. Ismail, R. A Nastro, International Journal of Energy Research 41(14) (2017) 2345-2355. https://doi.org/10.1002/er.3804

S. Z. Abbas, M. Rafatullah, N. Ismail, F. R. Shakoori, RSC Advances 8(34) (2018) 18800-18813. https://doi.org/10.1039/c8ra01711e

S. Z. Abbas, M. Rafatullah, N. Ismail, M. I. Syakir, International Journal of Energy Research 41(9) (2017) 1242-1264. https://doi.org/10.1002/er.3706

P. Choudhury, B. Bhunia, T. K. Bandyopadhyay, Journal of Electrochemical Science and Engineering 11(2) (2021) 129-142. https://doi.org/10.5599/jese.924

S. Shahane, P. Choudhury, O. Tiwari, U. Mishra, B. Bhunia, Exoelectrogenic Bacteria: A Candidate for Sustainable Bio-electricity Generation in Microbial Fuel Cells, in Waste to Sustainable Energy, L. Singh, D. M. Mahapatra (Eds.), CRC Press, Boca Raton, USA, 2019. p. 106. https://doi.org/10.1201/9780429448799

S. Z. Abbas, M. Rafatullah, M. A. Khan, M. R. Siddiqui, Frontiers in Microbiology 9 (2019) 3348. https://doi.org/10.3389/fmicb.2018.03348

A. Gatto, F. Busato, Journal of Cleaner Production 253 (2020) 118691. https://doi.org/10.1016/j.jclepro.2019.118691

B. Balannec, M. Vourch, M. Rabiller-Baudry, B. Chaufer, Separation and Purification Technology 42(2) (2005) 195-200. https://doi.org/10.1016/j.seppur.2004.07.013

K. Bensadok, N. El Hanafi, F. Lapicque, Desalination 280(1-3) (2011) 244-251. https://doi.org/10.1016/j.desal.2011.07.006

P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, International Journal of Renewable Energy Technology 9(1-2) (2018) 191-197. https://doi.org/10.1504/IJRET.2018.090114

P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, O. N. Tiwari, B. Bhunia, International Journal of Hydrogen Energy 46(31) (2021) 16815-16822. https://doi.org/10.1016/j.ijhydene.2020.08.024

B. Bhunia, B. Basak, P. Bhattacharya, A. Dey, Journal of Bioscience and Bioengineering 115(1) (2013) 86-89. https://doi.org/10.1016/j.jbiosc.2012.08.003

P. Choudhury, R. N. Ray, T.K. Bandyopadhyay, B. Bhunia, Fuel 266 (2020) 117073. https://doi.org/10.1016/j.fuel.2020.117073

Y.-J. Choi, E.-K. Jung, H.-J. Park, S.-H. Jung, S.-H. Kim, Bulletin of the Korean Chemical Society 28(9) (2007) 1591-1594. https://doi.org/10.5012/bkcs.2007.28.9.1591

F. G. Priest, Bacteriological Reviews 41(3) (1977) 711-753.

C. G. Kumar, R. K. Malik, M. P. Tiwari, K. D. Jany, MAN Microbiologie, aliments, nutrition 17(1) (1999) 39-48. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1944601

S. Tobisch, D. Zühlke, J. Bernhardt, J. Stülke, M. Hecker, Journal of Bacteriology 181(22) (1999) 6996-7004. https://doi.org/10.1128/JB.181.22.6996-7004.1999

B. Chauhan, R. Gupta, Process Biochemistry 39(12) (2004) 2115-2122. https://doi.org/10.1016/j.procbio.2003.11.002

S. Puri, Q. K. Beg, R. Gupta, Current Microbiology 44(4) (2002) 286-290. https://doi.org/10.1007/s00284-001-0006-8

O. Lefebvre, Z. Tan, S. Kharkwal, H. Y. Ng, Bioresource Technology 112 (2012) 336-340. https://doi.org/10.1016/j.biortech.2012.02.048

S. Malathi, R. Chakraborty, Applied and Environmental Microbiology 57(3) (1991) 712-716. https://doi.org/10.1128/aem.57.3.712-716.1991

T. A. Krulwich, A. A. Guffanti, Journal of Bioenergetics and Biomembranes 21(6) (1989) 663-677. https://doi.org/10.1007/BF00762685

S. G. Prowe, J. L. van de Vossenberg, A. J. Driessen, G. Antranikian, W. N. Konings, Journal of Bacteriology 178(14) (1996) 4099-5104. https://doi.org/10.1128/jb.178.14.4099-4104.1996

T. A. Krulwich, The Journal of Membrane Biology 89 (1986) 113-125. https://doi.org/10.1007/BF01869707

C. J. Peddie, G. M. Cook, H. W. Morgan, Journal of Bacteriology 181(10) (1999) 3172-3177. https://doi.org/10.1128/JB.181.10.3172-3177.1999

G. S. Lakshmi, C. S. Rao, R. S. Rao, P. J. Hobbs, R. S. Prakasham, Biochemical Engineering Journal 48(1) (2009) 51-57. https://doi.org/10.1016/j.bej.2009.08.005

B. Min, Ó. B. Román, I. Angelidaki, Biotechnology Letters 30(7) (2008) 1213-1218. https://doi.org/10.1007/s10529-008-9687-4

M. Phisalaphong, N. Srirattana, W. Tanthapanichakoon, Biochemical Engineering Journal 28(1) (2006) 36-43. https://doi.org/10.1016/j.bej.2005.08.039

M.L. Shuler, F. Kargi, Bioprocess Engineering: Basic Concepts 2008. 155-200.

Y. Ren, Y. Lv, Y. Wang, X.J.C. Li, Chemosphere 257 (2020) 127251. https://doi.org/10.1016/j.chemosphere.2020.127251

M. M. H. Coelho, N. W. S. Morais, E. L. Pereira, R. C. Leitão, A. B. dos Santos, Biochemical Engineering Journal 156 (2020) 107502. https://doi.org/10.1016/j.bej.2020.107502

M. K. Alavijeh, S. Yaghmaei, M. M. Mardanpour, Bioelectrochemistry 106(B) (2015) 298- 307. https://doi.org/10.1016/j.bioelechem.2015.07.003

X.-W. Liu, Y.-P. Wang, Y.-X. Huang, X.-F. Sun, G.-P. Sheng, R.J. Zeng, F. Li, F. Dong, S.-G. Wang, Z.-H. Tong, H.-Q. Yu, Biotechnology and Bioengineering 108(6) (2011) 1260-1267. https://doi.org/10.1002/bit.23056

M. M. Mardanpour, M. N. Esfahany, T. Behzad, R. Sedaqatvand, Biosensors and Bioelectronics 38(1) (2012) 264-269. https://doi.org/10.1016/j.bios.2012.05.046

A. Callegari, D. Cecconet, D. Molognoni, A. G. Capodaglio, Journal of Cleaner Production 189 (2018) 563-569. https://doi.org/10.1016/j.jclepro.2018.04.129

P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, B. Basak, M. Muthuraj, B. Bhunia, International Journal of Hydrogen Energy 46(4) (2021) 3171-3182. https://doi.org/10.1016/j.ijhydene.2020.06.152

S. Sanjay, T. Udayashankara, Materials Today: Proceedings 35(3) (2021) 308-311. https://doi.org/10.1016/j.matpr.2020.01.533

O. M. Ajunwa, O. A. Odeniyi, E. O. Garuba, E. Marsili, Process Biochemistry 104 (2021) 27-38. https://doi.org/10.1016/j.procbio.2021.01.003

B. Kim, I. S. Chang, R. M. Dinsdale, A. J. Guwy, Electrochimica Acta 366 (2021) 137388. https://doi.org/10.1016/j.electacta.2020.137388

T. Karuppiah, U. Uthirakrishnan, S. V. Sivakumar, S. Authilingam, J. Arun, R. Sivaramakrishnan, A. Pugazhendhi, International Journal of Hydrogen Energy (2021) in press. https://doi.org/10.1016/j.ijhydene.2021.06.034

S. Bagchi, R. N. Sahoo, M. Behera, P. Research, Environmental Science and Pollution Research (2021). https://doi.org/10.1007/s11356-021-14940-0

Z. A. Al-Taie, M. S. Shihab, S. Allami, Al-Nahrain Journal of Science 24(2) (2021) 9-13. http://5.10.230.12/index.php/anjs/article/view/2391

M. Sabri, N. Shamsuddin, M. Alias, H. Tajaruddin, M. Z. Makhtar, IOP Conference Series: Earth and Environmental Science 765 (2021) 012060. https://doi.org/10.1088/1755-1315/765/1/012060

M. Christwardana, L. A. Yoshi, I. Setyonadi, M. R. Maulana, AIP Conference Proceedings 2342(1) (2021) 050001. https://doi.org/10.1063/5.0045395

S. Kataki, S. Chatterjee, M. Vairale, S. Sharma, S. Dwivedi, D. K. Gupta, Renewable and Sustainable Energy Reviews 148 (2021) 111261. https://doi.org/10.1016/j.rser.2021.111261

S. R. B. Arulmani, H. L. Gnanamuthu, S. Kandasamy, G. Govindarajan, M. Alsehli, A. Elfasakhany, A. Pugazhendhi, H. Zhang, Process Biochemistry 107 (2021) 27-37. https://doi.org/10.1016/j.procbio.2021.04.015

Published
24-08-2021
Section
Bioelectrochemistry & Fuel Cells