Electrodeposited palladium as efficient electrocatalyst for hydrazine and methanol electro-oxidation and detection

Original scientific paper

Authors

  • Jelena D. Lović University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, Njegoševa 12, 11000 Belgrade, Republic of Serbia https://orcid.org/0000-0001-5956-8571

DOI:

https://doi.org/10.5599/jese.1166

Keywords:

Sensitivity, differential pulse voltammetry, electroanalytical properties
Graphical Abstract

Abstract

Electrodeposited palladium was used as an electrocatalyst for electrochemical oxidation of hydrazine and methanol and the development of a sensitive platform for their detection. The electrochemical behavior of the electrode was evaluated by cyclic voltammetry (CV) while electroanalytical properties were determined by means of differential pulse voltammetry (DPV). The electrodeposited Pd catalyst exhibited good electrocatalytic activity towards the oxidation of hydrazine in neutral solution and methanol oxidation in alkaline solution. Under optimized DPV conditions, the electrodeposited Pd electrode shows good sensing capability in hydrazine and methanol detection.

Downloads

Download data is not yet available.

References

S. S. Munjewar, S. B. Thombre, R. K. Mallick, Ionics 23 (2017) 1–18. https://doi.org/10.1007/s11581-016-1864-1

A. Serov, C. Kwak. Applied Catalysis B 98 (2010) 1-9. https://doi.org/10.1016/j.apcatb.2010.05.005

Y. Lianga, Y. Zhoua, J. Mab, J. Zhaoa, Y. Chena, Y. Tanga, T. Lua, Applied Catalysis B 103 (2011) 388-396. https://doi.org/10.1016/j.apcatb.2011.02.001

P. K. Rastogi, V. Ganesan, S. Krishnamoorthi, Electrochimica Acta 125 (2014) 593-600. http://dx.doi.org/10.1016/j.electacta.2014.01.148

D. Gioia, I. G. Casella, Sensors and Actuators B 237 (2016) 400-407. http://dx.doi.org/10.1016/j.snb.2016.06.109

Y. Zhang, B. Huang, J. Yeb, J. Ye, Journal of Electroanalytical Chemistry 801 (2017) 215-223. http://dx.doi.org/10.1016/j.jelechem.2017.07.036

B. Tao, J. Zhang, S. Hui, X. Chen, L. Wan, Electrochimica Acta 55 (2010) 5019-5023. https://doi.org/10.1016/j.electacta.2010.04.013

Z. Karimi, M. Shamsipur, M. A. Tabrizi, S. Rostamnia, Analytical Biochemistry 548 (2018) 32-37. https://doi.org/10.1016/j.ab.2018.01.033

J. Mirković, J. Lović, M. Avramov Ivić, D. Mijin. Electrochimica Acta 137 (2014) 705-713. http://dx.doi.org/10.1016/j.electacta.2014.06.048

L. Xiao, L. Zhuang, Y. Liu, J. Lu, H. D. Abruna, Journal of American Chemical Society 131 (2009) 602-608. http://dx.doi.org/10.1021/ja8063765

E. Habib, Microchemical Journal 149 (2019) 104004. https://doi.org/10.1016/j.microc.2019.104004

J. Wang, A. Khaniya, L. Hu, M. J. Beazley, W. E. Kadena, X. Feng, Journal of Materials Chemistry A 6 (2018) 18050-18056. http://dx.doi.org/10.1039/c8ta06219f

L. Aldous, R. G. Compton, Physical Chemistry Chemical Physics 13 (2011) 5279-5287. http://dx.doi.org/10.1039/c0cp02261f

M. Gerstl, M. Joksch, G. Fafilek, Journal of Electroanalytical Chemistry 741 (2015) 1–7. http://dx.doi.org/10.1016/j.jelechem.2015.01.009

E. G. Ciapina, L. B. Viana, R. M. I. S. Santos, M. S. M. Nogueira, O. P. Almeida-Junior, R. S. Nunes, S. F. Santos, R. Z. Nakazato, International Journal of Hydrogen Energy 43 (2018) 17748-17752. https://doi.org/10.1016/j.ijhydene.2018.07.137

H. Razmi, A. Azadbakht, M. H. Sadr, Analytical Science 21 (2005) 1317-1323. http://dx.doi.org/10.2116/analsci.21.1317

J. A. Harrison, Z. A. Khan, Journal of Electroanalytical Chemistry 26 (1970) 1-11. https://doi.org/10.1016/S0022-0728(70)80060-2

J. Li, X. Lin. Sensors and Actuators B 126 (2007) 527-535. http://dx.doi.org/10.1016/j.snb.2007.03.044

R. Miao, R. G. Compton, Electrochimica Acta 388 (2021) 138655. https://doi.org/10.1016/j.electacta.2021.138655

K. M. Emran, S. M. Ali, H. E. Alanazi, Journal of Electroanalytical Chemistry 856 (2020) 113661. https://doi.org/10.1016/j.jelechem.2019.113661

D. A. Finkelstein, R. Imbeault, S. Garbarino, L. Roué, D. Guay, Journal of Physical Chemistry C 120 (2016) 4717-4738. https://doi.org/10.1021/acs.jpcc.5b10156

T. V. Atkinson, A. J. Bard, Journal of Physical Chemistry 75 (1971) 2043-2048. https://doi.org/10.1021/j100682a023

X. Q. Cao, B. C. Wang, Q. Su, Journal of Electroanalytical Chemistry 361 (1993) 211-214. https://doi.org/10.1016/0022-0728(93)87056-2

J. Liu, J. Ye, C. Xu, S. P. Jiang, Y. Tong, Electrochemistry Communications 9 (2007) 2334-2339. https://doi.org/10.1016/j.elecom.2007.06.036

J. Wang, N. Cheng, M. N. Banis, B. Xiao, A. Riese, X. Sun, Electrochimica Acta 185 (2015) 267-275. https://doi.org/10.1016/j.electacta.2015.10.151

M. Zar, H. Tabaean, H. Omidvar, A. Saberimehr, G. Hosseinzadeh, Journal of Nanostructures 9 (2019) 539-546. https://doi.org/10.22052/JNS.2019.03.015

O. B. da Silva, S. A. S. Machado, Analytical Methods 4 (2012) 2348-2354. https://doi.org/10.1039/C2AY25111F

C. Karuppiah, M. Velmurugan, S.-M. Chen, R. Devasenathipathy, R. Karthik, S.-F. Wang, Electroanalysis 28 (2016) 808-816. https://doi.org/10.1002/elan.201500453

Downloads

Published

17-12-2021

How to Cite

Lović, J. D. (2021). Electrodeposited palladium as efficient electrocatalyst for hydrazine and methanol electro-oxidation and detection: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(2), 275–282. https://doi.org/10.5599/jese.1166

Issue

Section

Electrochemical Science