Screening technique on the selection of potent microorganisms for operation in microbial fuel cell for generation of power

  • Payel Choudhury Department of Electrical Engineering, National Institute of Technology Agartala, Agartala-799046, India
  • Biswanath Bhunia Department of BioEngineering, National Institute of Technology Agartala, Agartala-799046, India
  • Tarun Kanti Bandyopadhyaya Department of Chemical Engineering, National Institute of Technology Agartala, Agartala-799046, India
Keywords: bioelectricity, exoelectrogenic bacteria, bacterial growth, iron-reducing ability, Taguchi optimization, batch operation
Graphical Abstract


This paper focuses on determination of the influence of electrochemically active mi­cro­or­ga­ni­sms on the transmission of electrons from the respiratory enzymes to the electrode and as­sembling of exoelectrogens to the simulated wastewater medium. In this study, the total of eight microorganisms were experimentally tested to exhibit growth and high iron-reducing ability in the absence of mediators. A major connection was observed between the growth and iron-reduction ability of the micro­organism. The growth and iron-reduction ability were monitored experimentally over time. Based on output data, the screening was done among eight different micro­organisms, where Escherichia coli -K-12 was chosen as the most potent micro­organism for its wide application in a microbial fuel cell (MFC). In the present study, various biochemical process factors were optimized statistically using Tagu­chi metho­dology for the rapid development of growth and iron-reducing assay conditions. The design of various experimental trials was carried out using five process factors at three levels with orthogonal arrays (OA) layout of L18. Five process factors, including quantity of lactose, volume of trace element solution, inoculum percentage, pH, and temperature, were taken into consideration as imperative process factors and optimized for evaluation of growth of bacteria and iron reduction ability. The larger-is-best signal to noise (S/N) ratio, together with analysis of variance ANOVA, were used during optimization. Anticipated results demonstrated that the enhanced bacterial growth of 124.50 % and iron reduction ability of 112.6 % can be achieved with 8 g/L of lactose, 2 ml of trace element solution, 4 % (v/v) of inoculum, pH 7, and temperature of 35 oC. Furthermore, the growth and iron reduc­tion time profiles of Escherichia coli-K12 were performed to determine its feasibility in MFC. Open circuit voltage of 0.555 V was obtained over batch study on a single chamber microbial fuel cell (SCMFC).


Download data is not yet available.


P. Choudhury, U. S. Prasad Uday, N. Mahata, O.N. Tiwari, R. N. Ray, T.K. Bandyopadhyay, B. Bhunia, Renewable and Sustainable Energy Reviews 79 (2017) 372-389

P. Choudhury, U. S. Prasad Uday, T. K. Bandyopadhyay, R. N. Ray, B. Bhunia, Bioengineered 8(5) (2017) 471-487

S. Z. Abbas, M. Rafatullah, N. Ismail, M. I. Syakir, International Journal of Energy Research 41(9) (2017) 1242-1264

S. Z. Abbas, M. Rafatullah, N. Ismail, R. A Nastro, International Journal of Energy Research 41(14) (2017) 2345-2355

S. Z. Abbas, M. Rafatullah, N. Ismail, F. R. Shakoori, RSC Advances 8 (2018) 18800-18813

Z. He, S. D. Minteer, L. T. Angenent, Environmental Science & Technology 39 (2005) 5262-5267

S. Z. Abbas, M. Rafatullah, M. A. Khan, M. R. Siddiqui, Frontiers in Microbiology 9 (2019) 3348

I.-S. Kim, K.-J. Chae, M.-J. Choi, W. Verstraete, Environmental Engineering Research 13(2) (2008) 51 65

U. Schröder, J. Nießen, F. A. Scholz, Angewandte Chemie 42(25) (2003) 2880-2883

V. Sharma, P. P. Kundu, Enzyme and Microbial Technology 47(5) (2010) 179-188

B. E. Logan, Microbial fuel cells. John Wiley & Sons, 2008

K. Rabaey, W. Verstraete, Trends in Biotechnology 23(6) (2005) 291-298

P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, B. Bhunia, Arabian Journal for Science and Engineering 45 (2020) 4451-4461

C. Yan, J. W. Schmidberger, F. Parmeggiani, S. A. Hussain, N. J. Turner, S. L. Flitsch, P. Barran, Analyst 141(8) (2016) 2351-2355

P. Choudhury, R.N. Ray, T.K. Bandyopadhyay, International Journal of Renewable Energy Technology 9(1-2) (2018) 191-197

A. Szöllősi, J. M. Rezessy-Szabó, Á. Hoschke, Q. D. Nguyen, Bioresource Technology 179 (2015) 123-127

B. Basak, B. Bhunia, S. Mukherjee, A. Dey, Desalination and Water Treatment 51(34-36) (2013) 6846-6862

S. F. Hwang, J. C. Wu, RS. He, IOP Conference Series: Materials Science and Engineering 241 (2017) 012022

C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Journal of Power Sources 356 (2017) 225-244

S. V. Mohan, G. Velvizhi, J. A. Modestra, S. Srikanth, Renewable and Sustainable Energy Reviews 40 (2014) 779-797

C. Feng, J. Li, D. Qin, L. Chen, F. Zhao, S. Chen, H. Hu, C. P. Yu, PloS One 9(11) (2014) e113379

S. Pang, Y. Gao, S. Choi, Biosensors and Bioelectronics 100 (2018) 504-511

S.-J. Yuan, H. He, G.-P. Sheng, J.-J. Chen, Z.-H. Tong, Y.-Y. Cheng, W.-W. Li, Z.-Q. Lin, F. Zhang, H. Q. Yu, Scientific Reports 3 (2013) 1315

M. F. Umar, S. Z. Abbas, M. N. M. Ibrahim, N. Ismail, M. Rafatullah, Membranes 10 (2020) 205

Z. He, N. Wagner, S. D. Minteer, L. T. Angenent, Environmental Science & Technology 40 (2006) 5212-5217

A. T. Heijne, F. Liu, L. S. van Rijnsoever, M. Saakes, H. V. M. Hamelers, C. J. Buisman, Journal of Power Sources 196(18) (2011) 7572-7577

V. B. Wang, J. Du, X. Chen, A. W. Thomas, N. D. Kirchhofer, L. E. Garner, M. T. Maw, W. H. Poh, J. Hinks, S. Wuertz, S. Kjelleberg. Physical Chemistry Chemical Physics 16 (2013) 5867-72

T. Yamashita, H. Yokoyama, Biotechnology for Biofuels 11 (2018) 39

T. H. Han, M. H. Cho, J. Lee, Biotechnology and Bioprocess Engineering 19 (2014) 126-131

K. Dehnad, Wadsworth & Brooks. Cole Advanced Books & Software, Pacific Grove, Calif. Retrieved July 20 (1989).

S. Nasirahmadi, A. A. Safekordi, International Journal of Environmental Science & Technology 8 (2011) 823-830

Y. Qiao, C. M. Li, S.-J. Bao, Z. Lu, Y. Hong, Chemical Communications 11 (2008) 1290-1292

A. Ben-David, C.E. Davidson, Journal of Microbiological Methods 107 (2014) 214-221

J. Zhou, D. Wu, D. Guo, Journal of Chemical Technology & Biotechnology 85(10) (2010) 1402-1406

A. Mitra, Fundamentals of quality control and improvement, 4th edition. John Wiley & Sons, 2016.

W. E. Federation, American Public Health Association, American Public Health Association (APHA): Washington, DC, USA (2005).

M. M. Mardanpour, M. N. Esfahany, T. Behzad, R. Sedaqatvand, Biosensors and Bioelectronics 38(1) (2012) 264-269

H. Liu, B. E. Logan, Environmental Science & Technology 38 (2004) 4040-4046.

S. Mukherjee, S. Su, W. Panmanee, R. T. Irvin, D. J. Hassett, S. Choi, Sensors and Actuators A: Physical 201 (2013) 532-537

X. Cao, X. Huang, X. Zhang, P. Liang, M. Fan, Frontiers of Environmental Science & Engineering in China 3 (2009) 307-312

K. Umanath, D. I. Jalal, B. A. Greco, E. M. Umeukeje et. al. Journal of the American Society of Nephrology 26(10) (2015) 2578-2587

G. Choi, D.J. Hassett, S. Choi, Analyst 140 (2015) 4277-4283

Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, Z. Cao, International Journal of Hydrogen Energy 33(18) (2008) 4856-4862

K. N. Otto, E. K. Antonsson, Journal of Mechanical Design 115(1) (1993) 5-13

A. Adnani, M. Basri, E. A. Malek, A. B. Salleh, M. B. A. Rahman, N. Chaibakhsh, R. N. Z. Raja, A. Rahman, Industrial Crops and Products 31(2) (2010) 350-356

K.-L. Tsui, IIE Transactions 24(5) (1992) 44-57

T. Zhang, Y. Zeng, S. Chen, X. Ai, H. Yang, Electrochemistry Communications 9(3) (2007) 349-353

S. A. Masih, M. Devasahayam, M. Zimik, Journal of Scientific and Industrial Research 71 (2012) 621-626

B. Bhunia, D. Dutta, S. Chaudhuri, Engineering in Life Sciences 11(2) (2011) 207-215

A. Agrawal, R. Kaur, R. S. Walia, International Journal of Experimental Design and Process Optimisation 6(2) (2019) 89-126

S. Shahane, P. Choudhury, O. N. Tiwari, U. Mishra, B. Bhunia, Waste to Sustainable Energy: MFCs–Prospects through Prognosis, L. Singh, D. M. Mahapatan (Eds.), Taylor&Francis Group, Chap. 7. 2019. p. 106-124

T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, Electrochemistry Communications 10(2) (2008) 293-297

K. Xiang, Y. Qiao, C. B. Ching, C. M. Li, Electrochemistry Communications 11(8) (2009) 1593-1595

Bioelectrochemistry & Fuel Cells