Screening technique on the selection of potent microorganisms for operation in microbial fuel cell for generation of power

Authors

  • Payel Choudhury Department of Electrical Engineering, National Institute of Technology Agartala, Agartala-799046, India https://orcid.org/0000-0002-9538-518X
  • Biswanath Bhunia Department of BioEngineering, National Institute of Technology Agartala, Agartala-799046, India
  • Tarun Kanti Bandyopadhyaya Department of Chemical Engineering, National Institute of Technology Agartala, Agartala-799046, India

DOI:

https://doi.org/10.5599/jese.924

Keywords:

bioelectricity, exoelectrogenic bacteria, bacterial growth, iron-reducing ability, Taguchi optimization, batch operation

Abstract

This paper focuses on determination of the influence of electrochemically active mi­cro­or­ga­ni­sms on the transmission of electrons from the respiratory enzymes to the electrode and as­sembling of exoelectrogens to the simulated wastewater medium. In this study, the total of eight microorganisms were experimentally tested to exhibit growth and high iron-reducing ability in the absence of mediators. A major connection was observed between the growth and iron-reduction ability of the micro­organism. The growth and iron-reduction ability were monitored experimentally over time. Based on output data, the screening was done among eight different micro­organisms, where Escherichia coli -K-12 was chosen as the most potent micro­organism for its wide application in a microbial fuel cell (MFC). In the present study, various biochemical process factors were optimized statistically using Tagu­chi metho­dology for the rapid development of growth and iron-reducing assay conditions. The design of various experimental trials was carried out using five process factors at three levels with orthogonal arrays (OA) layout of L18. Five process factors, including quantity of lactose, volume of trace element solution, inoculum percentage, pH, and temperature, were taken into consideration as imperative process factors and optimized for evaluation of growth of bacteria and iron reduction ability. The larger-is-best signal to noise (S/N) ratio, together with analysis of variance ANOVA, were used during optimization. Anticipated results demonstrated that the enhanced bacterial growth of 124.50 % and iron reduction ability of 112.6 % can be achieved with 8 g/L of lactose, 2 ml of trace element solution, 4 % (v/v) of inoculum, pH 7, and temperature of 35 oC. Furthermore, the growth and iron reduc­tion time profiles of Escherichia coli-K12 were performed to determine its feasibility in MFC. Open circuit voltage of 0.555 V was obtained over batch study on a single chamber microbial fuel cell (SCMFC).

Downloads

Download data is not yet available.

References

P. Choudhury, U. S. Prasad Uday, N. Mahata, O.N. Tiwari, R. N. Ray, T.K. Bandyopadhyay, B. Bhunia, Renewable and Sustainable Energy Reviews 79 (2017) 372-389 https://doi.org/10.1016/j.rser.2017.05.098.

P. Choudhury, U. S. Prasad Uday, T. K. Bandyopadhyay, R. N. Ray, B. Bhunia, Bioengineered 8(5) (2017) 471-487 https://doi.org/10.1080/21655979.2016.1267883.

S. Z. Abbas, M. Rafatullah, N. Ismail, M. I. Syakir, International Journal of Energy Research 41(9) (2017) 1242-1264 https://doi.org/10.1002/er.3706.

S. Z. Abbas, M. Rafatullah, N. Ismail, R. A Nastro, International Journal of Energy Research 41(14) (2017) 2345-2355 https://doi.org/10.1002/er.3804.

S. Z. Abbas, M. Rafatullah, N. Ismail, F. R. Shakoori, RSC Advances 8 (2018) 18800-18813 https://doi.org/10.1039/C8RA01711E.

Z. He, S. D. Minteer, L. T. Angenent, Environmental Science & Technology 39 (2005) 5262-5267 https://doi.org/10.1021/es0502876.

S. Z. Abbas, M. Rafatullah, M. A. Khan, M. R. Siddiqui, Frontiers in Microbiology 9 (2019) 3348 https://doi.org/10.3389/fmicb.2018.03348.

I.-S. Kim, K.-J. Chae, M.-J. Choi, W. Verstraete, Environmental Engineering Research 13(2) (2008) 51 65 https://doi.org/10.4491/eer.2008.13.2.051.

U. Schröder, J. Nießen, F. A. Scholz, Angewandte Chemie 42(25) (2003) 2880-2883 https://doi.org/10.1002/anie.200350918.

V. Sharma, P. P. Kundu, Enzyme and Microbial Technology 47(5) (2010) 179-188 https://doi.org/10.1016/j.enzmictec.2010.07.001.

B. E. Logan, Microbial fuel cells. John Wiley & Sons, 2008 https://doi.org/10.1002/9780470258590.

K. Rabaey, W. Verstraete, Trends in Biotechnology 23(6) (2005) 291-298 https://doi.org/10.1016/j.tibtech.2005.04.008.

P. Choudhury, R. N. Ray, T. K. Bandyopadhyay, B. Bhunia, Arabian Journal for Science and Engineering 45 (2020) 4451-4461 https://doi.org/10.1007/s13369-020-04444-3.

C. Yan, J. W. Schmidberger, F. Parmeggiani, S. A. Hussain, N. J. Turner, S. L. Flitsch, P. Barran, Analyst 141(8) (2016) 2351-2355 https://doi.org/10.1039/C6AN00617E.

P. Choudhury, R.N. Ray, T.K. Bandyopadhyay, International Journal of Renewable Energy Technology 9(1-2) (2018) 191-197 https://doi.org/10.1504/IJRET.2018.090114.

A. Szöllősi, J. M. Rezessy-Szabó, Á. Hoschke, Q. D. Nguyen, Bioresource Technology 179 (2015) 123-127 https://doi.org/10.1016/j.biortech.2014.12.004.

B. Basak, B. Bhunia, S. Mukherjee, A. Dey, Desalination and Water Treatment 51(34-36) (2013) 6846-6862 https://doi.org/10.1080/19443994.2013.770638.

S. F. Hwang, J. C. Wu, RS. He, IOP Conference Series: Materials Science and Engineering 241 (2017) 012022 https://doi.org/10.1088/1757-899X/241/1/012022.

C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Journal of Power Sources 356 (2017) 225-244 https://doi.org/10.1016/j.jpowsour.2017.03.109.

S. V. Mohan, G. Velvizhi, J. A. Modestra, S. Srikanth, Renewable and Sustainable Energy Reviews 40 (2014) 779-797 https://doi.org/10.1016/j.rser.2014.07.109.

C. Feng, J. Li, D. Qin, L. Chen, F. Zhao, S. Chen, H. Hu, C. P. Yu, PloS One 9(11) (2014) e113379 https://dx.doi.org/10.1371%2Fjournal.pone.0113379.

S. Pang, Y. Gao, S. Choi, Biosensors and Bioelectronics 100 (2018) 504-511 https://doi.org/10.1016/j.bios.2017.09.044.

S.-J. Yuan, H. He, G.-P. Sheng, J.-J. Chen, Z.-H. Tong, Y.-Y. Cheng, W.-W. Li, Z.-Q. Lin, F. Zhang, H. Q. Yu, Scientific Reports 3 (2013) 1315 https://doi.org/10.1038/srep01315.

M. F. Umar, S. Z. Abbas, M. N. M. Ibrahim, N. Ismail, M. Rafatullah, Membranes 10 (2020) 205 https://doi.org/10.3390/membranes10090205.

Z. He, N. Wagner, S. D. Minteer, L. T. Angenent, Environmental Science & Technology 40 (2006) 5212-5217 https://doi.org/10.1021/es060394f.

A. T. Heijne, F. Liu, L. S. van Rijnsoever, M. Saakes, H. V. M. Hamelers, C. J. Buisman, Journal of Power Sources 196(18) (2011) 7572-7577 https://doi.org/10.1016/j.jpowsour.2011.04.034.

V. B. Wang, J. Du, X. Chen, A. W. Thomas, N. D. Kirchhofer, L. E. Garner, M. T. Maw, W. H. Poh, J. Hinks, S. Wuertz, S. Kjelleberg. Physical Chemistry Chemical Physics 16 (2013) 5867-72 https://doi.org/10.1039/C3CP50437A.

T. Yamashita, H. Yokoyama, Biotechnology for Biofuels 11 (2018) 39 https://doi.org/10.1186/s13068018-1046-7.

T. H. Han, M. H. Cho, J. Lee, Biotechnology and Bioprocess Engineering 19 (2014) 126-131 https://doi.org/10.1007/s12257-013-0429-7.

K. Dehnad, Wadsworth & Brooks. Cole Advanced Books & Software, Pacific Grove, Calif. Retrieved July 20 (1989).

S. Nasirahmadi, A. A. Safekordi, International Journal of Environmental Science & Technology 8 (2011) 823-830 https://doi.org/10.1007/BF03326265.

Y. Qiao, C. M. Li, S.-J. Bao, Z. Lu, Y. Hong, Chemical Communications 11 (2008) 1290-1292 https://doi.org/10.1039/B719955D.

A. Ben-David, C.E. Davidson, Journal of Microbiological Methods 107 (2014) 214-221 https://doi.org/10.1016/j.mimet.2014.08.023.

J. Zhou, D. Wu, D. Guo, Journal of Chemical Technology & Biotechnology 85(10) (2010) 1402-1406 https://doi.org/10.1002/jctb.2446.

A. Mitra, Fundamentals of quality control and improvement, 4th edition. John Wiley & Sons, 2016.

W. E. Federation, American Public Health Association, American Public Health Association (APHA): Washington, DC, USA (2005).

M. M. Mardanpour, M. N. Esfahany, T. Behzad, R. Sedaqatvand, Biosensors and Bioelectronics 38(1) (2012) 264-269 https://doi.org/10.1016/j.bios.2012.05.046.

H. Liu, B. E. Logan, Environmental Science & Technology 38 (2004) 4040-4046. https://doi.org/10.1021/es0499344.

S. Mukherjee, S. Su, W. Panmanee, R. T. Irvin, D. J. Hassett, S. Choi, Sensors and Actuators A: Physical 201 (2013) 532-537 https://doi.org/10.1016/j.sna.2012.10.025.

X. Cao, X. Huang, X. Zhang, P. Liang, M. Fan, Frontiers of Environmental Science & Engineering in China 3 (2009) 307-312 https://doi.org/10.1007/s11783-009-0028-1.

K. Umanath, D. I. Jalal, B. A. Greco, E. M. Umeukeje et. al. Journal of the American Society of Nephrology 26(10) (2015) 2578-2587 https://doi.org/10.1681/ASN.2014080842.

G. Choi, D.J. Hassett, S. Choi, Analyst 140 (2015) 4277-4283 https://doi.org/10.1039/C5AN00492F.

Y. Zou, C. Xiang, L. Yang, L.-X. Sun, F. Xu, Z. Cao, International Journal of Hydrogen Energy 33(18) (2008) 4856-4862 https://doi.org/10.1016/j.ijhydene.2008.06.061.

K. N. Otto, E. K. Antonsson, Journal of Mechanical Design 115(1) (1993) 5-13 https://doi.org/10.1115/1.2919325.

A. Adnani, M. Basri, E. A. Malek, A. B. Salleh, M. B. A. Rahman, N. Chaibakhsh, R. N. Z. Raja, A. Rahman, Industrial Crops and Products 31(2) (2010) 350-356 https://doi.org/10.1016/j.indcrop.2009.12.001.

K.-L. Tsui, IIE Transactions 24(5) (1992) 44-57 https://doi.org/10.1080/07408179208964244.

T. Zhang, Y. Zeng, S. Chen, X. Ai, H. Yang, Electrochemistry Communications 9(3) (2007) 349-353 https://doi.org/10.1016/j.elecom.2006.09.025.

S. A. Masih, M. Devasahayam, M. Zimik, Journal of Scientific and Industrial Research 71 (2012) 621-626 http://nopr.niscair.res.in/handle/123456789/14633.

B. Bhunia, D. Dutta, S. Chaudhuri, Engineering in Life Sciences 11(2) (2011) 207-215 https://doi.org/10.1002/elsc.201000020.

A. Agrawal, R. Kaur, R. S. Walia, International Journal of Experimental Design and Process Optimisation 6(2) (2019) 89-126 https://doi.org/10.1504/IJEDPO.2019.101718.

S. Shahane, P. Choudhury, O. N. Tiwari, U. Mishra, B. Bhunia, Waste to Sustainable Energy: MFCs–Prospects through Prognosis, L. Singh, D. M. Mahapatan (Eds.), Taylor&Francis Group, Chap. 7. 2019. p. 106-124 https://doi.org/10.1201/9780429448799.

T. Zhang, C. Cui, S. Chen, H. Yang, P. Shen, Electrochemistry Communications 10(2) (2008) 293-297 https://doi.org/10.1016/j.elecom.2007.12.009.

K. Xiang, Y. Qiao, C. B. Ching, C. M. Li, Electrochemistry Communications 11(8) (2009) 1593-1595 https://doi.org/10.1016/j.elecom.2009.06.004.

Published

10-03-2021

Issue

Section

Bioelectrochemistry & Fuel Cells

How to Cite

Screening technique on the selection of potent microorganisms for operation in microbial fuel cell for generation of power. (2021). Journal of Electrochemical Science and Engineering, 11(2), 129-142. https://doi.org/10.5599/jese.924

Similar Articles

1-10 of 114

You may also start an advanced similarity search for this article.