Experimental study and mathematical modeling of the corrosion inhibition of mild steel with an organic compound in 1 M HCl

Original scientific paper

Authors

  • Wafia Boukhedena Department of Science Materials, Larbi Tebessi University, 12002 Tebessa, Algeria and Mines Laboratory, Larbi Tebessi University, 12002 Tebessa, Algeria https://orcid.org/0000-0002-2372-0719
  • Samir Deghboudj Department of Mechanics, Larbi Tebessi University, 12002 Tebessa, Algeria and Mines Laboratory, Larbi Tebessi University, 12002 Tebessa, Algeria https://orcid.org/0000-0002-2372-0719

DOI:

https://doi.org/10.5599/jese.1050

Keywords:

ketene dithioacetal, hydrochloric acid, gravimetric measurements, linear regression, quadratic regression
Graphical Abstract

Abstract

In this paper, a synthesized organic compound from the family of ketene dithioacetal was studied as corrosion inhibitor for mild steel in 1.0 M hydrochloric acid by gravimetric measurements. The aim of this work is to study the effect of inhibitor concentration and temperature on the corrosion resistance, and to compare the experimental results with those obtained by mathematical models. The structural properties are characterized using the scanning electron microscopy technique. It has been found that the inhibition efficiency increases with increasing inhibitor concentration. The adsorption of studied compound on mild steel surface follows Langmuir’s isotherm. Taking into account the influence of inhibitor concentration and temperature on the corrosion inhibition efficiency, obtained data were analyzed by two mathematical models based on linear and quadratic regression. The obtained experimental results are in a good agreement with those predicted by the quadratic regression models.

Downloads

Download data is not yet available.

References

L. Afia, R. Salghi, A. Zarrouk, H. Zarrok, E. Bazzi, B. Hammouti, M. Zougagh, Transactions of the Indian Institute of Metals 66(1) (2013) 43-49. http://doi.org/10.1007/s12666-012-0168-z

S. Issaadi, T. Douadi, A. Zouaoui, S. Chafaa, M. A. Khan, G. Bouet, Corrosion Science 53(4) (2011) 1484-1488. http://doi.org/10.1016/j.corsci.2011.01.022

H. Jafari, I. Danaee, H. Eskandari, M. RashvandAvei, Industrial & Engineering Chemistry Research 52(20) (2013) 6617-6632. http://doi.org/10.1021/ie400066x

O. Ghasemi, I. Danaee, G. R. Rashed, M. RashvandAvei, M. H. Maddahy, Journal of Materials Engineering and Performance 22(4) (2013) 1054-1063. http://doi.org/10.1007/s11665-012-0348-3

Z. Moallem, I. Danaee, H. Eskandari, Transactions of The Indian Institute of Metals 67(6) (2014) 817-825. http://doi.org/10.1007/s12666-014-0403-x

A. Döner, R. Solmaz, M. Özcan, G. Kardaş, Corrosion Science 53(9) (2011) 2902-2913. http://doi.org/10.1016/j.corsci.2011.05.027

A. Fiala, W. Boukhedena, S. Lemallem, H. B. Ladouani, H. Allal, Journal of Bio- and Tribo-Corrosion 5(2) (2019) 42. http://doi.org/10.1007/s40735-019-0237-5

D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. Al-Noaimi, Corrosion Science 94 (2015) 21-37. http://doi.org/10.1016/j.corsci.2015.01.025

E. E. Abd El Aal, S. Abd El Wanees, A. Farouk, S. M. Abd El Haleem, Corrosion Science 68 (2013) 14-24. http://doi.org/10.1016/j.corsci.2012.03.021

H. Gerengi, I. Uygur, M. Solomon, M. Yildiz, H. Goksu, Sustainable Chemistry and Pharmacy 4 (2016) 57-66. http://doi.org/10.1016/j.sc2016.10.003

M. Mobin, I. Ahmad, M. Basik, M. Murmu, P. Banerjee, Sustainable Chemistry and Pharmacy 18 (2020) 100337. https://doi.org/10.1016/j.scp.2016.10.003

A. K. Singh, S. K. Shukla, M. Singh, M. A. Quraishi, Materials Chemistry and Physics 129(1-2) (2011) 68-76. http://doi.org/10.1016/j.matchemphys.2011.03.054

S. Cheng, S. Chen, T. Liu, X. Chang, Y. Yin, Materials Letters 61(14-15) (2007) 3276-3280. http://doi.org/10.1016/j.matlet.2006.11.102

M. Hazwan Hussin, M. Jain Kassim, Materials Chemistry and Physics 125(3) (2011) 461-468. http://doi.org/10.1016/j.matchemphys.2010.10.032

E. Ghali, V. S. Sastri, M. Elboujdaini, Corrosion Prevention and Protection: Practical Solutions, John Wiley & Sons, Chichester, England, 2007. p. 579. http://doi.org/10.1002/9780470024546

S. Manimegalai, P. Manjula, Journal of Materials and Environmental Science 6(6) (2015) 1629-1637.

M. A. Petrunin, L. B. Maksaeva, T. A. Yurasova, E. V. Terekhova, M. A. Maleeva, V. A. Kotenev, E. N. Kablov, A. Yu. Tsivadze, Protection of Metals and Physical Chemistry of Surfaces 51(6) (2015) 1010-1017. http://doi.org/10.1134/S2070205115060179

N. A. Negm, F. M. Ghuiba, S. M. Tawfik, Corrosion Science 53(11) (2011) 3566-3575. http://doi.org/10.1016/j.corsci.2011.06.029

A. A. Khadom, A. N. Abd, N. Arif Ahmed, South African Journal of Chemical Engineering 25 (2018) 13-21. http://doi.org/10.1016/j.sajce.2017.11.002

F. Bentiss, M. Lebrini, M. Lagrenée, Corrosion Science 47(12) (2005) 2915-2931. https://doi.org/10.1016/j.corsci.2005.05.034

G. Avci, Materials Chemistry and Physics 112(1) (2008) 234-238. https://doi.org/10.1016/j.matchemphys.2008.05.036

D. Özkır, K. Kayakırılmaz, E. Bayol, A. Ali Gürten, F. Kandemirli, Corrosion Science 56 (2012) 143-152. http://doi.org/10.1016/j.corsci.2011.11.010

M. A. Hegazy, M.F. Zaky, Corrosion Science 52(4) (2010) 1333-1341. https://doi.org/10.1016/j.corsci.2009.11.043

D.K. Yadav, D.S. Chauhan, I. Ahamad, M. A. Quraishi, RSC Advances 3(2) (2013) 632-646. http://doi.org/10.1039/C2RA21697C

S. K. Ahmed, W. B. Ali, A. A. Khadom, International Journal of Industrial Chemistry 10(2) (2019) 159-173. http://doi.org/10.1007/s40090-019-0181-8

A. A. Al-Amiery, A. A. H. Kadhum, A. B. Mohamad, A. Y. Musa, C. J. Li, Materials 6(12) (2013) 5466-5477. http://doi.org/10.3390/ma6125466

A. S. Fouda, M. A. Ismail, A. S. Abousalem, G. Y. Elewady, RSC Advances 7 (2017) 46414-46430. http://doi.org/10.1039/C7RA08092A

P. P. Kumari, P. Shetty, S. A. Rao, Arabian Journal of Chemistry 10(5) (2017) 653-663. http://doi.org/10.1016/j.arabjc.2014.09.005

Y. Wang, J. Hu, L. Zhang, J. Cao, M. Lu, Royal Society Open Science 7(5) (2020) 191692. http://doi.org/10.1098/rsos.191692

H. Z. Al-Sawaad, N. T. Faili, A. H. Essa, Portugaliae Electrochimica Acta 37(4) (2019) 205-216. http://doi.org/10.4152/pea.201904205

M. N. El-Haddad,Carbohydrate Polymers 112 (2014) 595-602. https://doi.org/10.1016/j.carbpol.2014.06.032

L. Li, Q. Qu, W. Bai, F. Yang, Y. Chen, S. Zhang, Z. Ding, Corrosion Science 59 (2012) 249-257. http://doi.org/10.1016/j.corsci.2012.03.008

T. M. Lv, S. H. Zhu, L. Guo, S. T. Zhang, Research on Chemical Intermediates 41(10) (2015) 7073-7093. http://doi.org/10.1007/s11164-014-1799-y

M. A. Hegazy, M. Abdallah, M. K. Awadd, M. Rezk, Corrosion Science 81 (2014) 54-64. http://doi.org/10.1016/j.corsci.2013.12.010

R. Solmaz, Corrosion Science 81 (2014) 75-84. http://doi.org/10.1016/j.corsci.2013.12.006

S. Umoren, I. Obot, Surface Review and Letters 15(03) (2008) 277-286. https://doi.org/10.1142/S0218625X08011366

E. Ebenso, Materials Chemistry and Physics 79(1) (2003) 58-70. http://doi.org/10.1016/S0254-0584(02)00446-7

C. Kumar, K. Mohana, Ionics 21(1) (2015) 263-281. http://doi.org/10.1007/s11581-014-1178-0

A. Y. Musa, A. A. H. Kadhum, A. B. Mohamad, A. R. Daud, M. S. Takriff, S. K. Kamarudin, Corrosion Science 51(10) (2009) 2393-2399. http://doi.org/10.1016/j.corsci.2009.06.024

A. Al-Fakih, M. Aziz, H. Sirat, Journal of Materials and Environmental Science 6(5) (2015) 1480-1487.

Downloads

Published

20-08-2021

How to Cite

Boukhedena, W., & Deghboudj, S. (2021). Experimental study and mathematical modeling of the corrosion inhibition of mild steel with an organic compound in 1 M HCl: Original scientific paper. Journal of Electrochemical Science and Engineering, 11(4), 227–239. https://doi.org/10.5599/jese.1050

Issue

Section

Electrochemical Science