Advancing through the blood-brain barrier: mechanisms, challenges and drug delivery strategies

Review paper

Authors

  • Ronny Vargas Department of Industrial Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica https://orcid.org/0000-0001-7319-6145
  • Noelia Martinez-Martinez Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain https://orcid.org/0009-0008-0079-4353
  • Catalina Lizano-Barrantes Department of Pharmaceutical Care and Clinical Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica https://orcid.org/0000-0003-1690-631X
  • Jorge Andrés Pacheco-Molina Department of Industrial Pharmacy, Faculty of Pharmacy, Universidad de Costa Rica, San José, Costa Rica https://orcid.org/0000-0003-4225-1839
  • Encarna García-Montoya Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain https://orcid.org/0000-0003-1576-5586
  • María Pilar Pérez-Lozano Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain https://orcid.org/0000-0001-6899-066X
  • Josep María Suñe-Negre Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain https://orcid.org/0000-0003-1368-2699
  • Carlos Suñe Department of Molecular Biology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), Granada, Spain https://orcid.org/0000-0002-7991-0458
  • Marc Suñe-Pou Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain https://orcid.org/0000-0002-0730-3077

DOI:

https://doi.org/10.5599/admet.2988

Keywords:

Brain delivery, central nervous system, targeted therapy, lipid nanoparticles

Abstract

Background and purpose: The delivery of therapeutics to the central nervous system (CNS) remains a major challenge due to the restrictive nature of the blood-brain barrier (BBB), a key evolutionary feature that preserves brain homeostasis. This review seeks to synthesize current knowledge on BBB composition, physiology, and transport mechanisms, and critically analyses drug delivery strategies aimed at overcoming this barrier and enabling effective CNS therapies. Approach: We conducted a comprehensive narrative review integrating evidence on BBB anatomy, transport and permeability mechanisms, drug delivery optimization strategies, with a particular focus on nanotechnology-based systems, and preclinical evaluation models. Key results: We highlight how a deeper understanding of BBB architecture and dynamic regulation can inform rational design of targeted strategies. Drug delivery approaches are summarized and compared, with emphasis on the potential of nanotechnology-based platforms to enhance CNS drug delivery. Translational considerations, including scalability, reproducibility, and regulatory requirements, are critically addressed. Major challenges identified include receptor saturation, competition with endogenous ligands, disease-specific variability in BBB permeability, and the limited predictive value of current preclinical models. Emerging tools, such as organ-on-chip (for evaluation) and microfluidic mixing (for manufacturing nanomaterials), offer promising means to improve physiological relevance and accelerate translation. Conclusion: Progress in BBB research has laid the groundwork for innovative therapies, but significant hurdles remain. Advancing CNS drug delivery will require collaborative work refining transport-targeting mechanisms, developing standardized preclinical models, and integrating fundamental research, applied nanomedicine, and regulatory science to open new opportunities for treating neurological and psychiatric disorders and brain tumours.

Downloads

Download data is not yet available.

References

[1] J.E. Niven, L. Chittka. Current Biology Evolving understanding of nervous system evolution. Current Biology 26 (2016) R937-R941. https://doi.org/10.1016/j.cub.2016.09.003 DOI: https://doi.org/10.1016/j.cub.2016.09.003

[2] A. Verkhratsky, M. Nedergaard. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philosophical Transactions of the Royal Society B: Biological Sciences 371 (2015) 0428. https://doi.org/10.1098/RSTB.2015.0428 DOI: https://doi.org/10.1098/rstb.2015.0428

[3] A. Pivoriūnas, A. Verkhratsky. Astrocyte-Endotheliocyte Axis in the Regulation of the Blood-Brain Barrier. Neurochemical Research 46 (2021) 2538-2550. https://doi.org/10.1007/s11064-021-03338-6 DOI: https://doi.org/10.1007/s11064-021-03338-6

[4] A.D. Dunton, T.Göpel, D.H. Ho, W. Burggren. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. International Journal of Molecular Sciences 22 (2021) 12111. https://doi.org/10.3390/ijms222212111 DOI: https://doi.org/10.3390/ijms222212111

[5] D. Wu, Q. Chen, X. Chen, F. Han, Z. Chen, Y. Wang. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduction and Targeted Therapy 8 (2023) 217. https://doi.org/10.1038/s41392-023-01481-w DOI: https://doi.org/10.1038/s41392-023-01481-w

[6] A. Dityatev, M.R. Wilson, D. Rusakov, C. Menaceur, F. Gosselet, L. Fenart, J. Saint-Pol. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 11 (2021) 133. https://doi.org/10.3390/cells11010133 DOI: https://doi.org/10.3390/cells11010133

[7] M. Bundgaard, N.J. Abbott. All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia 56 (2008) 699-708 https://doi.org/10.1002/GLIA.20642 DOI: https://doi.org/10.1002/glia.20642

[8] C. Falcone. Evolution of astrocytes: From invertebrates to vertebrates. Frontiers in Cell and Developmental Biology 10 (2022) 931311. https://doi.org/10.3389/fcell.2022.931311 DOI: https://doi.org/10.3389/fcell.2022.931311

[9] A. Verkhratsky, V. Parpura, B. Li, C. Scuderi. Astrocytes: The Housekeepers and Guardians of the CNS. Advances in Neurobiology 26 (2021) 21-53. https://doi.org/10.1007/978-3-030-77375-5_2 DOI: https://doi.org/10.1007/978-3-030-77375-5_2

[10] V. Muoio, P.B. Persson, M.M. Sendeski. The neurovascular unit - concept review. Acta Physiologica 210 (2014) 790-798. https://doi.org/10.1111/APHA.12250. DOI: https://doi.org/10.1111/apha.12250

[11] N.M. O’Brown, S.J. Pfau, C. Gu. Bridging barriers: a comparative look at the blood-brain barrier across organisms. Genes & Development 32 (2018) 466-478. https://doi.org/10.1101/GAD.309823.117 DOI: https://doi.org/10.1101/gad.309823.117

[12] D. Ribatti, B. Nico, E. Crivellato, M. Artico. Development of the blood-brain barrier: A historical point of view. The Anatomical Record Part B: The New Anatomist 289B (2006) 3-8. https://doi.org/10.1002/AR.B.20087 DOI: https://doi.org/10.1002/ar.b.20087

[13] Davson, H. History of the Blood-Brain Barrier Concept. Implications of the Blood-Brain Barrier and Its Manipulation, Springer, Boston MA, United States, 1989 pp. 27-52. https://doi.org/10.1007/978-1-4613-0701-3_2 DOI: https://doi.org/10.1007/978-1-4613-0701-3_2

[14] N.R. Saunders, J.J. Dreifuss, K.M. Dziegielewska, P.A. Johansson, M.D. Habgood, K. Møllgård, H.C. Bauer. The rights and wrongs of blood-brain barrier permeability studies: A walk through 100 years of history. Frontiers in Neuroscience 8 (2014) 1-26. https://doi.org/10.3389/fnins.2014.00404 DOI: https://doi.org/10.3389/fnins.2014.00404

[15] A. Villabona-Rueda, C. Erice, C.A. Pardo, M.F. Stins. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. Frontiers in Cellular Neuroscience 13 405 (2019) 405. https://doi.org/10.3389/fncel.2019.00405 DOI: https://doi.org/10.3389/fncel.2019.00405

[16] W.M. Pardridge. A Historical Review of Brain Drug Delivery. Pharmaceutics 14 (2022) 1283. https://doi.org/10.3390/PHARMACEUTICS14061283 DOI: https://doi.org/10.3390/pharmaceutics14061283

[17] S. Schaeffer, C. Iadecola. Revisiting the neurovascular unit. Nature Neuroscience 24 9 (2021) 1198-1209. https://doi.org/10.1038/S41593-021-00904-7 DOI: https://doi.org/10.1038/s41593-021-00904-7

[18] C. Iadecola. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96 (2017) 17-42. https://doi.org/10.1016/j.neuron.2017.07.030 DOI: https://doi.org/10.1016/j.neuron.2017.07.030

[19] R. Vargas, C. Lizano-Barrantes, M. Romero, K. Valencia-Clua, D.A. Narváez-Narváez, J.M. Suñé-Negre, P. Pérez-Lozano, E. García-Montoya, N. Martinez-Martinez, C. Hernández-Munain, C. Suñé, M. Suñé-Pou. The piper at the gates of brain: A systematic review of surface modification strategies on lipid nanoparticles to overcome the Blood-Brain-Barrier. International Journal of Pharmaceutics 665 124868 (2024) 124686. https://doi.org/10.1016/J.IJPHARM.2024.124686 DOI: https://doi.org/10.1016/j.ijpharm.2024.124686

[20] A. Mishra, R. Kumar, J. Mishra, K. Dutta, P. Ahlawat, A. Kumar, S. Dhanasekaran, A.K. Gupta, S. Sinha, D.K. Bishi, P.K. Gupta, S. Nayak. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. Journal of Drug Delivery Science and Technology 86 (2023) 104694. https://doi.org/10.1016/j.jddst.2023.104694 DOI: https://doi.org/10.1016/j.jddst.2023.104694

[21] A. Akhtar, A. Andleeb, T.S. Waris, M. Bazzar, A.R. Moradi, N.R. Awan, M. Yar. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of Controlled Release 330 (2021) 1152-1167. https://doi.org/10.1016/J.JCONREL.2020.11.021 DOI: https://doi.org/10.1016/j.jconrel.2020.11.021

[22] G. Guillama Barroso, M. Narayan, M. Alvarado, I. Armendariz, J. Bernal, X. Carabaza, S. Chavez, P. Cruz, V. Escalante, S. Estorga, D. Fernandez, C. Lozano, M. Marrufo, N. Ahmad, S. Negrete, K. Olvera, X. Parada, B. Portillo, A. Ramirez, R. Ramos, V. Rodriguez, P. Rojas, J. Romero, D. Suarez, G. Urueta, S. Viel. Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Chal¬len¬ges and Possibilities. ACS Omega 5 (2020) 12583-12595. https://doi.org/10.1021/acsomega.0c01592 DOI: https://doi.org/10.1021/acsomega.0c01592

[23] N. Weiss, F. Miller, S. Cazaubon, P.O. Couraud. The blood-brain barrier in brain homeostasis and neurological diseases. Biochimica et Biophysica Acta - Biomembranes 1788 (2009) 842-857. https://doi.org/10.1016/j.bbamem.2008.10.022 DOI: https://doi.org/10.1016/j.bbamem.2008.10.022

[24] N.J. Abbott, A.A.K. Patabendige, D.E.M. Dolman, S.R. Yusof, D.J. Begley. Structure and function of the blood-brain barrier. Neurobiology of Disease 37 (2010) 13-25. https://doi.org/10.1016/J.NBD.2009.07.030 DOI: https://doi.org/10.1016/j.nbd.2009.07.030

[25] C. Culkins, R. Adomanis, N. Phan, B. Robinson, E. Slaton, E. Lothrop, Y. Chen, B.R. Kimmel. Unlocking the Gates: Therapeutic Agents for Noninvasive Drug Delivery Across the Blood-Brain Barrier. Mole¬cular Pharmaceutics 21 (2024) 5430-5454. https://doi.org/10.1021/ACS.MOLPHARMACEUT.4C00604 DOI: https://doi.org/10.1021/acs.molpharmaceut.4c00604

[26] K. Wanat. Biological barriers, and the influence of protein binding on the passage of drugs across them. Molecular Biology Reports 47(4) (2020) 3221-3231. https://doi.org/10.1007/S11033-020-05361-2 DOI: https://doi.org/10.1007/s11033-020-05361-2

[27] R. Pandit, L. Chen, J. Götz. The blood-brain barrier: Physiology and strategies for drug delivery. Advanced Drug Delivery Reviews 165-166 (2020) 1-14. https://doi.org/10.1016/J.ADDR.2019.11.009 DOI: https://doi.org/10.1016/j.addr.2019.11.009

[28] G. Tosi, J.T. Duskey, J. Kreuter. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opinion on Drug Delivery 17 (2019) 23-32. https://doi.org/10.1080/17425247.2020.1698544 DOI: https://doi.org/10.1080/17425247.2020.1698544

[29] S. Ding, A.I. Khan, X. Cai, Y. Song, Z. Lyu, D. Du, P. Dutta, Y. Lin. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Materials Today 37 (2020) 112-125. https://doi.org/10.1016/j.mattod.2020.02.001 DOI: https://doi.org/10.1016/j.mattod.2020.02.001

[30] Q. He, J. Liu, J. Liang, X. Liu, W. Li, Z. Liu, Z. Ding, D. Tuo. Towards Improvements for Penetrating the Blood-Brain Barrier—Recent Progress from a Material and Pharmaceutical Perspective. Cells 7 (2018) 24 https://doi.org/10.3390/cells7040024 DOI: https://doi.org/10.3390/cells7040024

[31] J.J. Lochhead, J. Yang, P.T. Ronaldson, T.P. Davis. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Frontiers in Physiology 11 (2020) 914. https://doi.org/10.3389/FPHYS.2020.00914 DOI: https://doi.org/10.3389/fphys.2020.00914

[32] C.P. Profaci, R.N. Munji, R.S. Pulido, R. Daneman. The blood-brain barrier in health and disease: Important unanswered questions. Journal of Experimental Medicine 217(4) (2020) e20190062. https://doi.org/10.1084/JEM.20190062 DOI: https://doi.org/10.1084/jem.20190062

[33] S. Harilal, J. Jose, D.G.T. Parambi, R. Kumar, M.K. Unnikrishnan, M.S. Uddin, G.E. Mathew, R. Pratap, A. Marathakam, B. Mathew. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Research Bulletin 160 (2020) 121-140. https://doi.org/10.1016/J.BRAINRESBULL.2020.03.018 DOI: https://doi.org/10.1016/j.brainresbull.2020.03.018

[34] Y. Zhao, L. Gan, L. Ren, Y. Lin, C. Ma, X. Lin. Factors influencing the blood-brain barrier permeability. Brain Research 1788 (2022) 147397. https://doi.org/10.1016/J.BRAINRES.2022.147937 DOI: https://doi.org/10.1016/j.brainres.2022.147937

[35] F. Medina-Flores, G. Hurtado-Alvarado, A. Contis-Montes de Oca, S.P. López-Cervantes, M. Konigsberg, M.A. Deli, B. Gómez-González. Sleep loss disrupts pericyte-brain endothelial cell interactions impairing blood-brain barrier function. Brain, Behavior, and Immunity 89 (2020) 118-132. https://doi.org/10.1016/j.bbi.2020.05.077 DOI: https://doi.org/10.1016/j.bbi.2020.05.077

[36] A. Bhattacharya, D.K. Kaushik, B.M. Lozinski, V.W. Yong. Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. Journal of Neuroscience Research 98 (2020) 2390-2405. https://doi.org/10.1002/JNR.24715 DOI: https://doi.org/10.1002/jnr.24715

[37] M. Pekny, M. Pekna, A. Messing, C. Steinhäuser, J.M. Lee, V. Parpura, E.M. Hol, M. V. Sofroniew, A. Verkhratsky. Astrocytes: a central element in neurological diseases. Acta Neuropathologica 131(3) (2015) 323-345. https://doi.org/10.1007/S00401-015-1513-1 DOI: https://doi.org/10.1007/s00401-015-1513-1

[38] A. Verkhratsky, A. Pivoriūnas. Astroglia support, regulate and reinforce brain barriers. Neurobiology of Disease 179 (2023) 106054. https://doi.org/10.1016/j.nbd.2023.106054 DOI: https://doi.org/10.1016/j.nbd.2023.106054

[39] B.P. Heithoff, K.K. George, A.N. Phares, I.A. Zuidhoek, C. Munoz-Ballester, S. Robel. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69 (2021) 436-472. https://doi.org/10.1002/GLIA.23908 DOI: https://doi.org/10.1002/glia.23908

[40] R.C. Janzer, M.C. Raff. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325 6101 (1987) 253-257. https://doi.org/10.1038/325253a0 DOI: https://doi.org/10.1038/325253a0

[41] G. Allt, J.G. Lawrenson. The blood-nerve barrier: enzymes, transporters and receptors—a comparison with the blood-brain barrier. Brain Research Bulletin 52 (2000) 1-12. https://doi.org/10.1016/S0361-9230(00)00230-6 DOI: https://doi.org/10.1016/S0361-9230(00)00230-6

[42] R.C. Knopp, W.A. Banks, M.A. Erickson. Physical associations of microglia and the vascular blood-brain barrier and their importance in development, health, and disease. Current Opinion in Neurobiology 77 (2022) 102648. https://doi.org/10.1016/j.conb.2022.102648 DOI: https://doi.org/10.1016/j.conb.2022.102648

[43] A. Alahmari. Blood-Brain Barrier Overview: Structural and Functional Correlation. Neural Plasticity 2021 (2021) 6564585. https://doi.org/10.1155/2021/6564585 DOI: https://doi.org/10.1155/2021/6564585

[44] P. Pintér, A. Alpár. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. International Journal of Molecular Sciences 23 (2022) 11085. https://doi.org/10.3390/ijms231911085 DOI: https://doi.org/10.3390/ijms231911085

[45] M.S. Thomsen, L.J. Routhe, T. Moos. The vascular basement membrane in the healthy and pathological brain. Journal of Cerebral Blood Flow and Metabolism 37 (2017) 3300-3317. https://doi.org/10.1177/0271678X17722436 DOI: https://doi.org/10.1177/0271678X17722436

[46] Y. Chen, L. Liu. Modern methods for delivery of drugs across the blood-brain barrier. Advanced Drug Delivery Reviews 64 (2012) 640-665. https://doi.org/10.1016/J.ADDR.2011.11.010 DOI: https://doi.org/10.1016/j.addr.2011.11.010

[47] F. Pifferi, B. Laurent, M. Plourde. Lipid Transport and Metabolism at the Blood-Brain Interface: Implications in Health and Disease. Frontiers in Physiology 12 (2021) 645646. https://doi.org/10.3389/fphys.2021.645646 DOI: https://doi.org/10.3389/fphys.2021.645646

[48] E. McMullen, A. Weiler, H.M. Becker, S. Schirmeier. Plasticity of Carbohydrate Transport at the Blood-Brain Barrier. Frontiers in Behavioral Neuroscience 14 (2021) 1443912. https://doi.org/10.3389/fnbeh.2020.612430 DOI: https://doi.org/10.3389/fnbeh.2020.612430

[49] R. Zaragozá. Transport of Amino Acids Across the Blood-Brain Barrier. Frontiers in Physiology 11 (2020) 973. https://doi.org/10.3389/fphys.2020.00973 DOI: https://doi.org/10.3389/fphys.2020.00973

[50] M.A. Erickson, W.A. Banks. Transcellular routes of blood-brain barrier disruption. Experimental Biology and Medicine 247 (2022) 788-796. https://doi.org/10.1177/15353702221080745 DOI: https://doi.org/10.1177/15353702221080745

[51] J. Xie, Z. Shen, Y. Anraku, K. Kataoka, X. Chen. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224 (2019) 119491. https://doi.org/10.1016/J.BIOMATERIALS.2019.119491 DOI: https://doi.org/10.1016/j.biomaterials.2019.119491

[52] T. Nitta, M. Hata, S. Gotoh, Y. Seo, H. Sasaki, N. Hashimoto, M. Furuse, S. Tsukita. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. Journal of Cell Biology 161 (2003) 653-660. https://doi.org/10.1083/JCB.200302070 DOI: https://doi.org/10.1083/jcb.200302070

[53] J. Rejman, V. Oberle, I.S. Zuhorn, D. Hoekstra. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377 (2004) 159-169. https://doi.org/10.1042/bj20031253 DOI: https://doi.org/10.1042/bj20031253

[54] K. Kucharz, N. Kutuzov, O. Zhukov, M. Mathiesen Janiurek, M. Lauritzen. Shedding Light on the Blood-Brain Barrier Transport with Two-Photon Microscopy In Vivo. Pharmaceutical Research 39(7) (2022) 1457-1468. https://doi.org/10.1007/S11095-022-03266-2 DOI: https://doi.org/10.1007/s11095-022-03266-2

[55] L.E. Ibarra. Cellular Trojan horses for delivery of nanomedicines to brain tumors: where do we stand and what is next? Nanomedicine (Lond) 16(7) (2021) 517-522. https://doi.org/10.2217/nnm-2021-0034 DOI: https://doi.org/10.2217/nnm-2021-0034

[56] F.H. Santiago-Tirado, T.L. Doering. False friends: Phagocytes as Trojan horses in microbial brain infections. PLOS Pathogens 13 (2017) e1006680. https://doi.org/10.1371/journal.ppat.1006680 DOI: https://doi.org/10.1371/journal.ppat.1006680

[57] A. Achar, R. Myers, C. Ghosh. Drug Delivery Challenges in Brain Disorders across the Blood-Brain Barrier: Novel Methods and Future Considerations for Improved Therapy. Biomedicines 9 (2021) 1834. https://doi.org/10.3390/BIOMEDICINES9121834 DOI: https://doi.org/10.3390/biomedicines9121834

[58] R. Vargas, J. Soley. Modulación Alostérica Positiva selectiva para el receptor muscarínico M1: descubrimiento y desarrollo del compuesto VU0486846 y su importancia para el desarrollo terapéutico tratamientos para el Alzheimer y la esquizofrenia Selective Positive Allosteric. Ars Pharmaceutica 62(1) (2021) 90-111. https://revistaseug.ugr.es/index.php/ars/article/view/15704/15568 [in Spanish]

[59] M.M. Salman, Z. Al-Obaidi, P. Kitchen, A. Loreto, R.M. Bill, R. Wade-Martins. Advances in applying computer-aided drug design for neurodegenerative diseases. International Journal of Molecular Sciences 22 (2021) 4688. https://doi.org/10.3390/ijms22094688 DOI: https://doi.org/10.3390/ijms22094688

[60] E. Nance, S.H. Pun, R. Saigal, D.L. Sellers. Drug delivery to the central nervous system. Nature Reviews Materials 7 (2021) 314-331. https://doi.org/10.1038/S41578-021-00394-W DOI: https://doi.org/10.1038/s41578-021-00394-w

[61] H. Wu, Y. Zhou, Y. Wang, L. Tong, F. Wang, S. Song, L. Xu, B. Liu, H. Yan, Z. Sun. Current State and Future Directions of Intranasal Delivery Route for Central Nervous System Disorders: A Scientometric and Visualization Analysis. Frontiers in Pharmacology 12 (2021) 717192. https://doi.org/10.3389/FPHAR.2021.717192 DOI: https://doi.org/10.3389/fphar.2021.717192

[62] G. Torrandell-Haro, G.L. Branigan, F. Vitali, N. Geifman, J.M. Zissimopoulos, R.D. Brinton. Statin therapy and risk of Alzheimer’s and age-related neurodegenerative diseases. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 6 (2020) e12108. https://doi.org/10.1002/trc2.12108 DOI: https://doi.org/10.1002/trc2.12108

[63] O. Hansson. Biomarkers for neurodegenerative diseases. Nature Medicine 27 (2021) 954-963. https://doi.org/10.1038/S41591-021-01382-X DOI: https://doi.org/10.1038/s41591-021-01382-x

[64] H. Aldewachi, R.N. Al-Zidan, M.T. Conner, M.M. Salman. High-Throughput Screening Platforms in the Discovery of Novel Drugs for Neurodegenerative Diseases. Bioengineering 8 (2021) 30. https://doi.org/10.3390/BIOENGINEERING8020030 DOI: https://doi.org/10.3390/bioengineering8020030

[65] L. Gamarra, L. Cláudio, R. Pereira, D. Silva, J.B. Mamani, S. Bhunia, N. Kolishetti, A. Vashist, A.Y. Arias, D. Brooks, M. Nair. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 15 (2023) 2658. https://doi.org/10.3390/PHARMACEUTICS15122658 DOI: https://doi.org/10.3390/pharmaceutics15122658

[66] R.I. Teleanu, M.D. Preda, A.G. Niculescu, O. Vladâcenco, C.I. Radu, A.M. Grumezescu, D.M. Teleanu. Brain Barrier. Pharmaceutics 14 (2022) 987. https://doi.org/10.3390/PHARMACEUTICS14050987 DOI: https://doi.org/10.3390/pharmaceutics14050987

[67] B. Sethi, V. Kumar, K. Mahato, D.W. Coulter, R.I. Mahato. Recent advances in drug delivery and targeting to the brain. Journal of Controlled Release 350 (2022) 668-687. https://doi.org/10.1016/J.JCONREL.2022.08.051 DOI: https://doi.org/10.1016/j.jconrel.2022.08.051

[68] F. Meng, Y. Xi, J. Huang, P.W. Ayers. A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Scientific Data 8 (2021) 289. https://doi.org/10.1038/s41597-021-01069-5 DOI: https://doi.org/10.1038/s41597-021-01069-5

[69] R. Khatoon, A. Alam, K. Sharma. Current approaches and prospective drug targeting to brain. Journal of Drug Delivery Science and Technology 61 (2020) 102098. https://doi.org/10.1016/j.jddst.2020.102098 DOI: https://doi.org/10.1016/j.jddst.2020.102098

[70] M. Nowak, M.E. Helgeson, S. Mitragotri. Delivery of Nanoparticles and Macromolecules across the Blood-Brain Barrier. Advanced Therapeutics 3 (2020) 1900073. https://doi.org/10.1002/adtp.201900073 DOI: https://doi.org/10.1002/adtp.201900073

[71] S. Masoudi Asil, J. Ahlawat, G. Guillama Barroso, M. Narayan. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomaterials Science 8 (2020) 4088-4107. https://doi.org/10.1039/D0BM00809E DOI: https://doi.org/10.1039/D0BM00809E

[72] M. Pinkiewicz, M. Pinkiewicz, J. Walecki, A. Zaczyński, M. Zawadzki. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers 16 (2024) 236. https://doi.org/10.3390/CANCERS16010236 DOI: https://doi.org/10.3390/cancers16010236

[73] M. Gernert, M. Feja. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 12 (2020) 1134. https://doi.org/10.3390/PHARMACEUTICS12121134 DOI: https://doi.org/10.3390/pharmaceutics12121134

[74] S. Ul Islam, A. Shehzad, M. Bilal Ahmed, Y.S. Lee. Intranasal Delivery of Nanoformulations: A Potential Way of Treatment for Neurological Disorders. Molecules 25 (2020) 1929. https://doi.org/10.3390/MOLECULES25081929 DOI: https://doi.org/10.3390/molecules25081929

[75] L.C. Fonseca, J.A. Lopes, J. Vieira, C. Viegas, C.S. Oliveira, R.P. Hartmann, P. Fonte. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Delivery and Translational Research 11 (2021) 411-425. https://doi.org/10.1007/S13346-021-00940-7 DOI: https://doi.org/10.1007/s13346-021-00940-7

[76] J. Wen, Y. Huang, T.P. Crowe, W.H. Hsu. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 14 (2022) 629. https://doi.org/10.3390/PHARMACEUTICS14030629 DOI: https://doi.org/10.3390/pharmaceutics14030629

[77] J. Koo, Y. Shin, H. Jeon, J. Cheong, S. Cho, C. Park, E.C. Song, J.D. Ramsey, C. Lim, K.T. Oh. Enhancing glioblastoma therapy via intranasal administration of highly potent cell-penetrating peptide decorated nanoparticles. Journal of Controlled Release 378 (2025) 997-1012. https://doi.org/10.1016/J.JCONREL.2024.12.058 DOI: https://doi.org/10.1016/j.jconrel.2024.12.058

[78] S. Sharma, P. Gauba, A. Tyagi, S. Dang. Chitosan-modified polymeric nanoparticles for the nose-to-brain drug delivery of paroxetine: an in vitro and in vivo evaluation. Nanoscale 17 (2025) 1687-1702. https://doi.org/10.1039/D4NR04250F DOI: https://doi.org/10.1039/D4NR04250F

[79] V. Deshmukh, M. Narwade, K.R. Gajbhiye. Intranasal Delivery of Paclitaxel-Loaded Ligand Conjugated Polymeric Nanoparticles for Targeted Brain Delivery. AAPS PharmSciTech 26 (2025) 49. https://doi.org/10.1208/S12249-025-03046-2 DOI: https://doi.org/10.1208/s12249-025-03046-2

[80] H. Fu, D.M. McCarty. Crossing the blood-brain-barrier with viral vectors. Current Opinion in Virology 21 (2016) 87-92. https://doi.org/10.1016/J.COVIRO.2016.08.006 DOI: https://doi.org/10.1016/j.coviro.2016.08.006

[81] G.C. Terstappen, A.H. Meyer, R.D. Bell, W. Zhang. Strategies for delivering therapeutics across the blood-brain barrier. Nature Reviews Drug Discovery 20 (2021) 362-383. https://doi.org/10.1038/s41573-021-00139-y DOI: https://doi.org/10.1038/s41573-021-00139-y

[82] M. Charabati, J.M. Rabanel, C. Ramassamy, A. Prat. Overcoming the Brain Barriers: From Immune Cells to Nanoparticles. Trends in Pharmacological Sciences 41 (2020) 42-54. https://doi.org/10.1016/j.tips.2019.11.001 DOI: https://doi.org/10.1016/j.tips.2019.11.001

[83] J. Saint-Pol, F. Gosselet, S. Duban-Deweer, G. Pottiez, Y. Karamanos. Targeting and Crossing the Blood-Brain Barrier with Extracellular Vesicles. Cells 9 (2020) 851. https://doi.org/10.3390/CELLS9040851 DOI: https://doi.org/10.3390/cells9040851

[84] D.B. Stanimirović, J.K. Sandhu, W.J. Costain. Emerging Technologies for Delivery of Biotherapeutics and Gene Therapy Across the Blood-Brain Barrier. BioDrugs 32 (2018) 547-559. https://doi.org/10.1007/S40259-018-0309-Y DOI: https://doi.org/10.1007/s40259-018-0309-y

[85] J. Matsumoto, T. Stewart, W.A. Banks, J. Zhang. The Transport Mechanism of Extracellular Vesicles at the Blood-Brain Barrier. Current Pharmaceutical Design 23 (2018) 6206-6214. https://doi.org/10.2174/1381612823666170913164738 DOI: https://doi.org/10.2174/1381612823666170913164738

[86] P. Jiang, Y. Xiao, X. Hu, C. Wang, H. Gao, H. Huang, J. Lv, Z. Qi, Z. Wang. RVG29 Peptide-Modified Exosomes Loaded with Mir-133b Mediate the RhoA-ROCK Pathway to Improve Motor and Neurological Symptoms in Parkinson’s Disease. ACS Biomaterials Science and Engineering 10 (2024) 3069-3085. https://doi.org/10.1021/acsbiomaterials.3c01622 DOI: https://doi.org/10.1021/acsbiomaterials.3c01622

[87] K. Haroon, H. Zheng, S. Wu, Z. Liu, Y. Tang, G.Y. Yang, Y. Liu, Z. Zhang. Engineered exosomes mediated targeted delivery of neuroprotective peptide NR2B9c for the treatment of traumatic brain injury. International Journal of Pharmaceutics 649 (2024) 123656. https://doi.org/10.1016/J.IJPHARM.2023.123656 DOI: https://doi.org/10.1016/j.ijpharm.2023.123656

[88] P. Pourmasoumi, M. Abdouss, M. Farhadi, S.B. Jameie, H.A. Khonakdar. Co-delivery of temozolomide and quercetin with folic acid-conjugated exosomes in glioblastoma treatment. Nanomedicine 19 (2024) 2271-2287. https://doi.org/10.1080/17435889.2024.2395234 DOI: https://doi.org/10.1080/17435889.2024.2395234

[89] M. Sánchez-Navarro, E. Giralt, M. Teixidó. Blood-brain barrier peptide shuttles. Current Opinion in Chemical Biology 38 (2017) 134-140. https://doi.org/10.1016/J.CBPA.2017.04.019 DOI: https://doi.org/10.1016/j.cbpa.2017.04.019

[90] M. Teixidó, E. Zurita, M. Malakoutikhah, T. Tarragó, E. Giralt. Diketopiperazines as a tool for the study of transport across the Blood-Brain Barrier (BBB) and their potential use as BBB-shuttles. Journal of the American Chemical Society 129 (2007) 11802-11813. https://doi.org/10.1021/ja073522o DOI: https://doi.org/10.1021/ja073522o

[91] Y. Anami, W. Xiong, A. Yamaguchi, C.M. Yamazaki, N. Zhang, Z. An, K. Tsuchikama. Homogeneous antibody-angiopep 2 conjugates for effective brain targeting. RSC Advances 12 (2022) 3359-3364. https://doi.org/10.1039/D1RA08131D DOI: https://doi.org/10.1039/D1RA08131D

[92] A. Regina, M. Demeule, S. Tripathy, S. Lord-Dufour, J.C. Currie, M. Iddir, B. Annabi, J.P. Castaigne, J.E. Lachowicz. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Molecular Cancer Therapeutics 14 (2015) 129-140. https://doi.org/10.1158/1535-7163.MCT-14-0399 DOI: https://doi.org/10.1158/1535-7163.MCT-14-0399

[93] A.R. Neves, L. van der Putten, J.F. Queiroz, M. Pinheiro, S. Reis. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. Journal of Biotechnology 331 (2021) 108-117. https://doi.org/10.1016/j.jbiotec.2021.03.010 DOI: https://doi.org/10.1016/j.jbiotec.2021.03.010

[94] S. Arora, J. Singh. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. International Journal of Pharmaceutics 608 (2021) 121095. https://doi.org/10.1016/J.IJPHARM.2021.121095 DOI: https://doi.org/10.1016/j.ijpharm.2021.121095

[95] D. Bi, D.M. Unthan, L. Hu, J. Bussmann, K. Remaut, M. Barz, H. Zhang. Polysarcosine-based lipid formulations for intracranial delivery of mRNA. Journal of Controlled Release 356 (2023) 1-13. https://doi.org/10.1016/J.JCONREL.2023.02.021 DOI: https://doi.org/10.1016/j.jconrel.2023.02.021

[96] A.C. Correia, A.R. Monteiro, R. Silva, J.N. Moreira, J.M. Sousa Lobo, A.C. Silva. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Advanced Drug Delivery Reviews 189 (2022) 114485. https://doi.org/10.1016/j.addr.2022.114485 DOI: https://doi.org/10.1016/j.addr.2022.114485

[97] P. Khare, S.X. Edgecomb, C.M. Hamadani, E.E.L. Tanner, D. S Manickam. Lipid nanoparticle-mediated drug delivery to the brain. Advanced Drug Delivery Reviews 197 (2023) 114861. https://doi.org/10.1016/J.ADDR.2023.114861 DOI: https://doi.org/10.1016/j.addr.2023.114861

[98] A.G. Niculescu, C. Chircov, A.C. Bîrcă, A.M. Grumezescu. Nanomaterials Synthesis through Microfluidic Methods: An Updated Overview. Nanomaterials 11 (2021) 864. https://doi.org/10.3390/NANO11040864. DOI: https://doi.org/10.3390/nano11040864

[99] R. Vargas, M. Romero, T. Berasategui, D.A. Narváez-Narváez, P. Ramirez, A. Nardi-Ricart, E. García-Montoya, P. Pérez-Lozano, J.M. Suñe-Negre, C. Moreno-Castro, C. Hernández-Munain, C. Suñe, M. Suñe-Pou. Dialysis is a key factor modulating interactions between critical process parameters during the microfluidic preparation of lipid nanoparticles. Colloids and Interface Science Communications 54 (2023) 100709. https://doi.org/10.1016/j.colcom.2023.100709. DOI: https://doi.org/10.1016/j.colcom.2023.100709

[100] A. Kadari, D. Pooja, R.H. Gora, S. Gudem, V.R.M. Kolapalli, H. Kulhari, R. Sistla. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. European Journal of Pharmaceutics and Biopharmaceutics 132 (2018) 168-179. https://doi.org/10.1016/J.EJPB.2018.09.012 DOI: https://doi.org/10.1016/j.ejpb.2018.09.012

[101] P. Ganesan, D. Narayanasamy. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustainable Chemistry and Pharmacy 6 (2017) 37-56. https://doi.org/10.1016/J.SCP.2017.07.002 DOI: https://doi.org/10.1016/j.scp.2017.07.002

[102] C. Ekhator, M.Q. Qureshi, A.W. Zuberi, M. Hussain, N. Sangroula, S. Yerra, M. Devi, M.A. Naseem, S.B. Bellegarde, P.R. Pendyala. Advances and Opportunities in Nanoparticle Drug Delivery for Central Nervous System Disorders: A Review of Current Advances. Cureus 15 (2023) e44302. https://doi.org/10.7759/cureus.44302 DOI: https://doi.org/10.7759/cureus.44302

[103] C. Ferraris, R. Cavalli, P.P. Panciani, L. Battaglia. Overcoming the blood-brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. International Journal of Nanomedicine 15 (2020) 2999-3022. https://doi.org/10.2147/IJN.S231479 DOI: https://doi.org/10.2147/IJN.S231479

[104] C. Pucci, D. De Pasquale, A. Marino, C. Martinelli, S. Lauciello, G. Ciofani. Hybrid Magnetic Nanovectors Promote Selective Glioblastoma Cell Death through a Combined Effect of Lysosomal Membrane Permeabilization and Chemotherapy. ACS Applied Materials and Interfaces 12 (2020) 29037-29055. https://doi.org/10.1021/acsami.0c05556 DOI: https://doi.org/10.1021/acsami.0c05556

[105] I. Arduino, R.M. Iacobazzi, C. Riganti, A.A. Lopedota, M.G. Perrone, A. Lopalco, A. Cutrignelli, M. Cantore, V. Laquintana, M. Franco, N.A. Colabufo, G. Luurtsema, M. Contino, N. Denora. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer’s disease. International Journal of Pharmaceutics 591 (2020) 120011. https://doi.org/10.1016/J.IJPHARM.2020.120011 DOI: https://doi.org/10.1016/j.ijpharm.2020.120011

[106] E.M. McConnell, K. Ventura, Z. Dwyer, V. Hunt, A. Koudrina, M.R. Holahan, M.C. Derosa. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chemical Neuroscience 10 (2019) 371-383. https://doi.org/10.1021/acschemneuro.8b00292 DOI: https://doi.org/10.1021/acschemneuro.8b00292

[107] F. Ma, L. Yang, Z. Sun, J. Chen, X. Rui, Z. Glass, Q. Xu. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Science Advances 6 (2020) eabb4429. https://doi.org/10.1126/sciadv.abb4429 DOI: https://doi.org/10.1126/sciadv.abb4429

[108] L. Wu, W. Huang, K. Peng, Y. Wang, Q. Chen, B. Lu. Enhancing the stability, BBB permeability and neuroprotective activity of verbascoside in vitro using lipid nanocapsules in combination with menthol. Food Chemistry 414 (2023) 135682. https://doi.org/10.1016/J.FOODCHEM.2023.135682 DOI: https://doi.org/10.1016/j.foodchem.2023.135682

[109] M.R. Vijayakumar, K.Y. Vajanthri, C.K. Balavigneswaran, S.K. Mahto, N. Mishra, M.S. Muthu, S. Singh. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids and Surfaces B: Biointerfaces 145 (2016) 479-491. https://doi.org/10.1016/J.COLSURFB.2016.05.037 DOI: https://doi.org/10.1016/j.colsurfb.2016.05.037

[110] A. Falcão, J. Sousa, A. Pais, C. Vitorino. Peptide-lipid nanoconstructs act site-specifically towards glioblastoma growth impairment. European Journal of Pharmaceutics and Biopharmaceutics 155 (2020) 177-189. https://doi.org/10.1016/J.EJPB.2020.08.015 DOI: https://doi.org/10.1016/j.ejpb.2020.08.015

[111] Y.C. Kuo, C.C. Hsu. Anti-melanotransferrin and apolipoprotein E on doxorubicin-loaded cationic solid lipid nanoparticles for pharmacotherapy of glioblastoma multiforme. Journal of the Taiwan Institute of Chemical Engineers 77 (2017) 10-20. https://doi.org/10.1016/j.jtice.2017.04.026 DOI: https://doi.org/10.1016/j.jtice.2017.04.026

[112] R.M. Ray, A.H. Hansen, M. Taskova, B. Jandl, J. Hansen, C. Soemardy, K. V. Morris, K. Astakhova. Enhanced target cell specificity and uptake of lipid nanoparticles using RNA aptamers and peptides. Beilstein Journal of Organic Chemistry 17 (2021) 891-907. https://doi.org/10.3762/BJOC.17.75 DOI: https://doi.org/10.3762/bjoc.17.75

[113] Y. Han, C. Gao, H. Wang, J. Sun, M. Liang, Y. Feng, Q. Liu, S. Fu, L. Cui, C. Gao, Y. Li, Y. Yang, B. Sun. Macrophage membrane-coated nanocarriers Co-Modified by RVG29 and TPP improve brain neuronal mitochondria-targeting and therapeutic efficacy in Alzheimer’s disease mice. Bioactive Materials 6 (2021) 529-542. https://doi.org/10.1016/j.bioactmat.2020.08.017 DOI: https://doi.org/10.1016/j.bioactmat.2020.08.017

[114] V. Apostolopoulos, J. Bojarska, T.T. Chai, S. Elnagdy, K. Kaczmarek, J. Matsoukas, R. New, K. Parang, O.P. Lopez, H. Parhiz, C.O. Perera, M. Pickholz, M. Remko, M. Saviano, M. Skwarczynski, Y. Tang, W.M. Wolf, T. Yoshiya, J. Zabrocki, P. Zielenkiewicz, M. Alkhazindar, V. Barriga, K. Kelaidonis, E.M. Sarasia, I. Toth. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 26 (2021) 430. https://doi.org/10.3390/MOLECULES26020430 DOI: https://doi.org/10.3390/molecules26020430

[115] A. Accardo, D. Tesauro, G. Morelli. Peptide-based targeting strategies for simultaneous imaging and therapy with nanovectors. Polymer Journal 45 (2013) 481-493. https://doi.org/10.1038/pj.2012.215 DOI: https://doi.org/10.1038/pj.2012.215

[116] S. Andrade, J.A. Loureiro, M.J. Ramalho, S. Habib, M. Singh. Angiopep-2-Modified Nanoparticles for Brain-Directed Delivery of Therapeutics: A Review. Polymers 14 (2022) 712. https://doi.org/10.3390/POLYM14040712 DOI: https://doi.org/10.3390/polym14040712

[117] C. Díaz-Perlas, B. Oller-Salvia, M. Sánchez-Navarro, M. Teixidó, E. Giralt. Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood-brain barrier transport. Chemical Science 9 (2018) 8409-8415. https://doi.org/10.1039/C8SC02415D DOI: https://doi.org/10.1039/C8SC02415D

[118] B. Oller-Salvia, M. Sánchez-Navarro, E. Giralt, M. Teixidó. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chemical Society Reviews 45 (2016) 4690-4707. https://doi.org/10.1039/C6CS00076B DOI: https://doi.org/10.1039/C6CS00076B

[119] R. Prades, B. Oller-Salvia, S.M. Schwarzmaier, J. Selva, M. Moros, M. Balbi, V. Grazú, J.M. De La Fuente, G. Egea, N. Plesnila, M. Teixidõ, E. Giralt. Applying the Retro-Enantio Approach To Obtain a Peptide Capable of Overcoming the Blood-Brain Barrier. Angewandte Chemie International Edition 54 (2015) 3967-3972. https://doi.org/10.1002/anie.201411408 DOI: https://doi.org/10.1002/anie.201411408

[120] J.H. Lee, J.A. Engler, J.F. Collawn, B.A. Moore. Receptor mediated uptake of peptides that bind the human transferrin receptor. European Journal of Biochemistry 268 (2001) 2004-2012. https://doi.org/10.1046/j.1432-1327.2001.02073.x DOI: https://doi.org/10.1046/j.1432-1327.2001.02073.x

[121] A. Faissner. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. Frontiers in Network Physiology 3 (2023) 1190240. https://doi.org/10.3389/fnetp.2023.1190240 DOI: https://doi.org/10.3389/fnetp.2023.1190240

[122] J. Chen, Y. Su, S. Pi, B. Hu, L. Mao. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Frontiers in Cardiovascular Medicine 8 (2021) 682389. https://doi.org/10.3389/fcvm.2021.682389 DOI: https://doi.org/10.3389/fcvm.2021.682389

[123] R. Huey, S. Hawthorne, P. McCarron. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. Journal of Drug Targeting 25 (2017) 379-385. https://doi.org/10.1080/1061186X.2016.1223676 DOI: https://doi.org/10.1080/1061186X.2016.1223676

[124] B. Oller-Salvia, M. Sánchez-Navarro, S. Ciudad, M. Guiu, P. Arranz-Gibert, C. Garcia, R.R. Gomis, R. Cecchelli, J. García, E. Giralt, M. Teixidõ. MiniAp-4: A Venom-Inspired Peptidomimetic for Brain Delivery. Angewandte Chemie (International Ed. in English) 55 (2016) 572-575. https://doi.org/10.1002/anie.201508445 DOI: https://doi.org/10.1002/anie.201508445

[125] N.J. Abbott. Blood-brain barrier structure and function and the challenges for CNS drug delivery. Journal of Inherited Metabolic Disease 36 (2013) 437-449. https://doi.org/10.1007/s10545-013-9608-0 DOI: https://doi.org/10.1007/s10545-013-9608-0

[126] Y. Morofuji, S. Nakagawa. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Current Pharmaceutical Design 26 (2020) 1466-1485. https://doi.org/10.2174/1381612826666200224112534 DOI: https://doi.org/10.2174/1381612826666200224112534

[127] A.S. Hanafy, D. Dietrich, G. Fricker, A. Lamprecht. Blood-brain barrier models: Rationale for selection. Advanced Drug Delivery Reviews 176 (2021) 113859. https://doi.org/10.1016/J.ADDR.2021.113859 DOI: https://doi.org/10.1016/j.addr.2021.113859

[128] E. Jagtiani, M. Yeolekar, S. Naik, V. Patravale. In vitro blood brain barrier models: An overview. Journal of Controlled Release 343 (2022) 13-30. https://doi.org/10.1016/J.JCONREL.2022.01.011 DOI: https://doi.org/10.1016/j.jconrel.2022.01.011

[129] B.S.P. Meihua Rose Feng. Assessment of Blood-Brain Barrier Penetration: In Silico, In Vitro and In Vivo. Current Drug Metabolism 3 (2005) 647-657. https://doi.org/10.2174/1389200023337063 DOI: https://doi.org/10.2174/1389200023337063

[130] J.A. Nicolazzo, S.A. Charman, W.N. Charman. Methods to assess drug permeability across the blood-brain barrier. Journal of Pharmacy and Pharmacology 58 (2010) 281-293. https://doi.org/10.1211/JPP.58.3.0001 DOI: https://doi.org/10.1211/jpp.58.3.0001

[131] Y. Li, T. Chen, X. Miao, X. Yi, X. Wang, H. Zhao, S.M.Y. Lee, Y. Zheng. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacological Research 125 (2017) 246-257. https://doi.org/10.1016/J.PHRS.2017.08.017 DOI: https://doi.org/10.1016/j.phrs.2017.08.017

[132] K. Washida, Y. Hattori, M. Ihara. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. International Journal of Molecular Sciences 20 (2019) 6176. https://doi.org/10.3390/IJMS20246176 DOI: https://doi.org/10.3390/ijms20246176

[133] I. Puscas, F. Bernard-Patrzynski, M. Jutras, M.A. Lécuyer, L. Bourbonnière, A. Prat, G. Leclair, V.G. Roullin. IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening. Pharmaceutics 11 (2019) 587. https://doi.org/10.3390/PHARMACEUTICS11110587 DOI: https://doi.org/10.3390/pharmaceutics11110587

[134] B. Cui, S.W. Cho. Blood-brain barrier-on-a-chip for brain disease modeling and drug testing. BMB Reports 55 (2022) 213 https://doi.org/10.5483/BMBREP.2022.55.5.043 DOI: https://doi.org/10.5483/BMBRep.2022.55.5.043

[135] S. Kawakita, K. Mandal, L. Mou, M.M. Mecwan, Y. Zhu, S. Li, S. Sharma, A.L. Hernandez, H.T. Nguyen, S. Maity, N.R. de Barros, A. Nakayama, P. Bandaru, S. Ahadian, H.J. Kim, R.D. Herculano, E. Holler, V. Jucaud, M.R. Dokmeci, A. Khademhosseini. Organ-On-A-Chip Models of the Blood-Brain Barrier: Recent Advances and Future Prospects. Small 18 (2022) 2201401. https://doi.org/10.1002/smll.202201401 DOI: https://doi.org/10.1002/smll.202201401

[136] R. Vargas, A. Egurbide-sifre, L. Medina. Organ-on-a-Chip systems for new drugs development. ADMET and DMPK 9 (2021) 111-141. https://doi.org/10.5599/admet.942 DOI: https://doi.org/10.5599/admet.942

[137] R. Mittal, F.W. Woo, C.S. Castro, M.A. Cohen, J. Karanxha, J. Mittal, T. Chhibber, V.M. Jhaveri. Organ-on-chip models: Implications in drug discovery and clinical applications. Journal of Cellular Physiology 234 (2019) 8352-8380. https://doi.org/10.1002/jcp.27729 DOI: https://doi.org/10.1002/jcp.27729

Downloads

Published

19-10-2025

Issue

Section

Pharmaceutics

How to Cite

Advancing through the blood-brain barrier: mechanisms, challenges and drug delivery strategies: Review paper. (2025). ADMET and DMPK, 13(5), 2988. https://doi.org/10.5599/admet.2988

Funding data

Similar Articles

1-10 of 224

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)