Elucidating CYP2D6-driven metabolism and hepatotoxic bioactivation of metoprolol in plateable human and animal hepatocytes

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/admet.2961

Keywords:

Metabolite, cytotoxicity, recombinant, low-clearance, glutathione, CYP2D6

Abstract

Background and purpose: As a classic β-blocker with low systemic clearance, metoprolol has been linked to rare but clinically significant hepatotoxicity, yet its hepatic metabolic fate remains poorly characterized. Experimental approach: Metoprolol was incubated individually in plateable human and animal hepatocytes, and recombinant cytochrome (CYP) P450 enzymes, followed by sample processing for cytotoxicity assessment, stability analysis, phenotyping and metabolite identification studies. Key results: In vitro cytotoxicity assessment revealed distinct species-specific responses to metoprolol exposure. Metoprolol showed no observable cytotoxicity across the tested concentration range (0 to 500 µM) in human hepatocytes, whereas it was cytotoxic only at a concentration of 500 µM in rat hepatocytes. Metabolic characterization showed low intrinsic clearance in human hepatocytes (0.56±0.12 µL min-1 per million cells) over a 72-hour incubation. Comprehensive mass spectrometer analysis identified 22 metabolites across four species (rat, dog, monkey, and human) and fifteen metabolites were identified as the new ones, with CYP2D6-mediated biotransfor­ma­tion pathways (including mono-oxygenation, O-demethylation, and oxidation) accounting for the generation of four major metabolites (M1, M10, M13, M17). Notably, species-specific metabolism was observed for a-hydroxy-metoprolol (M10). It served as the predominant metabolite in rat hepatocytes and underwent subsequent bioactivation to a reactive glutathione (GSH) conjugate. Inhibition studies with 1-aminobenzo­triazole (a non-specific CYP inhibitor) confirmed the CYP-dependent nature of this hepatotoxic metabolic pathway. Conclusion: The sustained metabolic activity of plateable hepatocytes facilitated a comprehensive metabolic profiling of metoprolol, including direct observation of GSH-mediated bioactivation. Integrating with cytotoxicity data, these findings offered crucial insights into its hepatic adverse effects.

Downloads

Download data is not yet available.

References

[1] N. Blanchard, N.J. Hewitt, P. Silber, H. Jones, P. Coassolo, T. Lave. Prediction of hepatic clearance using cryopreserved human hepatocytes: a comparison of serum and serum-free incubations. Journal of Pharmacy and Pharmacology 58 (2010) 633-641. http://doi.org/10.1211/jpp.58.5.0008 DOI: https://doi.org/10.1211/jpp.58.5.0008

[2] Z. Zhou, M.J. Xu, B. Gao. Hepatocytes: A key cell type for innate immunity. Cellular and Molecular Immunology 13 (2016) 301-315. http://doi.org/10.1038/cmi.2015.97 DOI: https://doi.org/10.1038/cmi.2015.97

[3] D. Dalvie, R. Scott Obach, P. Kang, C. Prakash, C.M. Loi, S. Hurst, A. Nedderman, L. Goulet, E. Smith, H.Z. Bu, D.A. Smith. Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites. Chemical Research in Toxicology 22 (2009) 357-368. http://doi.org/10.1021/tx8004357 DOI: https://doi.org/10.1021/tx8004357

[4] M.G. Soars, D.F. McGinnity, K. Grime, R.J. Riley. The pivotal role of hepatocytes in drug discovery. Chemico-Biological Interactions 168 (2007) 2-15. http://doi.org/10.1016/j.cbi.2006.11.002 DOI: https://doi.org/10.1016/j.cbi.2006.11.002

[5] K.H. Grime, P. Barton, D.F. McGinnity. Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics. Molecular Pharmaceutics 10 (2013) 1191-1206. http://doi.org/10.1021/mp300476z DOI: https://doi.org/10.1021/mp300476z

[6] A.K. Sohlenius-Sternbeck, C. Jones, D. Ferguson, B.J. Middleton, D. Projean, E. Floby, J. Bylund, L. Afzelius. Practical use of the regression offset approach for the prediction of in vivo intrinsic clearance from hepatocytes. Xenobiotica 42 (2012) 841-852. http://doi.org/10.3109/00498254.2012.669080 DOI: https://doi.org/10.3109/00498254.2012.669080

[7] P. Chao, A.S. Uss, K. Cheng. Use of intrinsic clearance for prediction of human hepatic clearance. Expert Opinion on Drug Metabolism and Toxicology 6 (2010) 189-198. http://doi.org/10.1517/17425250903405622 DOI: https://doi.org/10.1517/17425250903405622

[8] R.S. Obach. Predicting clearance in humans from in vitro data. Current Topics in Medicinal Chemistry 11 (2011) 334-339. http://doi.org/10.2174/156802611794480873 DOI: https://doi.org/10.2174/156802611794480873

[9] E.L. Lecluyse, E. Alexandre. Isolation and culture of primary hepatocytes from resected human liver tissue. Methods in Molecular Biology (Clifton, N.J.) 640 (2010) 57-82. http://doi.org/10.1007/978-1-60761-688-7_3 DOI: https://doi.org/10.1007/978-1-60761-688-7_3

[10] H.M. Jones, J.B. Houston. Substrate depletion approach for determining in vitro metabolic clearance: Time dependencies in hepatocyte and microsomal incubations. Drug Metabolism and Disposition 32 (2004) 973-982. http://doi.org/10.1124/dmd.104.000125 DOI: https://doi.org/10.1124/dmd.104.000125

[11] A.P. Li, C. Lu, J.A. Brent, C. Pham, A. Fackett, C.E. Ruegg, P.M. Silber. Cryopreserved human hepatocytes: Characterization of drug-metabolizing activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chemico-Biological Interactions 121 (1999) 17-35. http://doi.org/10.1016/S0009-2797(99)00088-5 DOI: https://doi.org/10.1016/S0009-2797(99)00088-5

[12] R. Murgasova. Further Assessment of the Relay Hepatocyte Assay for Determination of Intrinsic Clearance of Slowly Metabolised Compounds Using Radioactivity Monitoring and LC-MS Methods. European Journal of Drug Metabolism and Pharmacokinetics 44 (2019) 817-826. http://doi.org/10.1007/s13318-019-00571-x DOI: https://doi.org/10.1007/s13318-019-00571-x

[13] H.S. Brown, M. Griffin, J.B. Houston. Evaluation of cryopreserved human hepatocytes as an alternative in vitro system to microsomes for the prediction of metabolic clearance. Drug Metabolism and Disposition 35 (2007) 293-301. http://doi.org/10.1124/dmd.106.011569 DOI: https://doi.org/10.1124/dmd.106.011569

[14] N.J. Hewitt, M.J.G. Lechón, J.B. Houston, D. Hallifax, H.S. Brown, P. Maurel, J.G. Kenna, L. Gustavsson, C. Lohmann, C. Skonberg, A. Guillouzo, G. Tuschl, A.P. Li, E. Lecluyse, G.M.M. Groothuis, J.G. Hengstler. Primary hepatocytes: Current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metabolism Reviews 39 (2007) 159-234. http://doi.org/10.1080/03602530601093489 DOI: https://doi.org/10.1080/03602530601093489

[15] A. Jetter, G.A. Kullak-Ublick. Drugs and hepatic transporters: A review. Pharmacological Research 154 (2020) 104234. http://doi.org/10.1016/j.phrs.2019.04.018 DOI: https://doi.org/10.1016/j.phrs.2019.04.018

[16] R. Namdari, K. Jones, S.S. Chuang, S. Van Cruchten, Z. Dincer, N. Downes, L.F. Mikkelsen, J. Harding, S. Jäckel, B. Jacobsen, J. Kinyamu-Akunda, A. Lortie, S. Mhedhbi, S. Mohr, M.W. Schmitt, H. Prior. Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. Regulatory Toxicology and Pharmacology 126 (2021) 105029. http://doi.org/10.1016/j.yrtph.2021.105029 DOI: https://doi.org/10.1016/j.yrtph.2021.105029

[17] H. Prior, R. Haworth, B. Labram, R. Roberts, A. Wolfreys, F. Sewell. Justification for species selection for pharmaceutical toxicity studies. Toxicology Research 9 (2021) 758-770. http://doi.org/10.1093/TOXRES/TFAA081 DOI: https://doi.org/10.1093/toxres/tfaa081

[18] M. Darnell. T. Schreiter, K. Zeilinger, T. Urbaniak, T. Söderdahl, I. Rossberg, B. Dillnér, A.-L. Berg, J. C. Gerlach, T. B. Andersson. Cytochrome P450 induction in HepaRG cells cultured in a dynamic 3D bioreactor. Drug Metabolism Reviews 41 (2009) 1131-1138. http://doi.org/10.1124/dmd.110.037721 DOI: https://doi.org/10.1124/dmd.110.037721

[19] S. Anthérieu, C. Chesné, R. Li, S. Camus, A. Lahoz, L. Picazo, M. Turpeinen, A. Tolonen, J. Uusitalo, C. Guguen-Guillouzo, A. Guillouzo. Stable expression, activity, and inducibility of cytochromes P450 in differentiated HepaRG cells. Drug Metabolism and Disposition 38 (2010) 516-525. http://doi.org/10.1124/dmd.109.030197 DOI: https://doi.org/10.1124/dmd.109.030197

[20] B. Bonn, P. Svanberg, A. Janefeldt, I. Hultman, K. Grime. Determination of human hepatocyte intrinsic clearance for slowly metabolized compounds: Comparison of a primary hepatocyte/stromal cell co-culture with plated primary hepatocytes and hepaRG. Drug Metabolism and Disposition 44 (2016) 527-533. http://doi.org/10.1124/dmd.115.067769 DOI: https://doi.org/10.1124/dmd.115.067769

[21] T.S. Chan, H. Yu, A. Moore, S.R. Khetani, D. Tweedie. Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metabolism and Disposition 41 (2013) 58-66. http://doi.org/10.1124/dmd.113.053397 DOI: https://doi.org/10.1124/dmd.113.053397fullarticlecorrection

[22] D. Ramsden, D.J. Tweedie, T.S. Chan, M.E. Taub, Y. Li. Bridging in vitro and in vivo metabolism and transport of faldaprevir in human using a novel cocultured human hepatocyte system, hepatopac. Drug Metabolism and Disposition 42 (2014) 394-406. http://doi.org/10.1124/dmd.113.055897 DOI: https://doi.org/10.1124/dmd.113.055897

[23] D. Ramsden, D.J. Tweedie, R. St. George, L.Z. Chen, Y. Li. Generating an in vitro-in vivo correlation for metabolism and liver enrichment of a hepatitis C virus drug, faldaprevir, using a rat hepatocyte model (hepatopac). Drug Metabolism and Disposition 42 (2014) 407-414. http://doi.org/10.1124/dmd.113.055947 DOI: https://doi.org/10.1124/dmd.113.055947

[24] L. Di, P. Trapa, R.S. Obach, K. Atkinson, Y.A. Bi, A.C. Wolford, B. Tan, T.S. McDonald, Y. Lai, L.M. Tremaine. A novel relay method for determining low-clearance values. Drug Metabolism and Disposition 40 (2012) 1960-1965. http://doi.org/10.1124/dmd.112.046425 DOI: https://doi.org/10.1124/dmd.112.046425

[25] L. Di, R.S. Obach. Addressing the Challenges of Low Clearance in Drug Research. AAPS Journal 17 (2015) 352-357. http://doi.org/10.1208/s12248-014-9691-7 DOI: https://doi.org/10.1208/s12248-014-9691-7

[26] K.A. Hoffmaster, R.Z. Turncliff, E.L. LeCluyse, R.B. Kim, P.J. Meier, K.L.R. Brouwer. P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: Relevance to the hepatobiliary disposition of a model opioid peptide. Pharmaceutical Research 21 (2004) 1294-1302. http://doi.org/10.1023/B:PHAM.0000033018.97745.0d DOI: https://doi.org/10.1023/B:PHAM.0000033018.97745.0d

[27] K. Kanda, R. Takahashi, T. Yoshikado, Y. Sugiyama. Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes. Drug Metabolism and Pharmacokinetics 33 (2018) 164-172. http://doi.org/10.1016/j.dmpk.2018.04.001 DOI: https://doi.org/10.1016/j.dmpk.2018.04.001

[28] B. Swift, N.D. Pfeifer, K.L.R. Brouwer. Sandwich-cultured hepatocytes: An in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metabolism Reviews 42 (2010) 446-471. http://doi.org/10.3109/03602530903491881 DOI: https://doi.org/10.3109/03602530903491881

[29] J.H. Brown, P. Das, M.D. DiVito, D. Ivancic, L.P. Tan, J.A. Wertheim. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomaterialia 73 (2018) 217-227. http://doi.org/10.1016/j.actbio.2018.02.009 DOI: https://doi.org/10.1016/j.actbio.2018.02.009

[30] M. Oorts, J. Keemink, N. Deferm, R. Adriaensen, L. Richert, P. Augustijns, P. Annaert. Extra collagen overlay prolongs the differentiated phenotype in sandwich-cultured rat hepatocytes. Journal of Pharmacological and Toxicological Methods 90 (2018) 31-38. http://doi.org/10.1016/j.vascn.2017.10.007 DOI: https://doi.org/10.1016/j.vascn.2017.10.007

[31] J. Keemink, M. Oorts, P. Annaert. Primary hepatocytes in sandwich culture. Methods in Molecular Biology 1250 (2014) 175-188. http://doi.org/10.1007/978-1-4939-2074-7_12 DOI: https://doi.org/10.1007/978-1-4939-2074-7_12

[32] P. Lancett, B. Williamson, P. Barton, R.J. Riley. Development and characterization of a human hepatocyte low intrinsic clearance assay for use in drug discovery. Drug Metabolism and Disposition 46 (2018) 1169-1178. http://doi.org/10.1124/dmd.118.081596 DOI: https://doi.org/10.1124/dmd.118.081596

[33] N. Treijtel, A. Barendregt, A.P. Freidig, B.J. Blaauboer, J.C.H. Van Eijkeren. Modeling the in vitro intrinsic clearance of the slowly metabolized compound tolbutamide determined in sandwich-cultured rat hepatocytes. Drug Metabolism and Disposition 32 (2004) 884-891. http://doi.org/10.1124/dmd.32.8.884 DOI: https://doi.org/10.1124/dmd.32.8.884

[34] W. Xiao, G. Perry, K. Komori, Y. Sakai. New physiologically-relevant liver tissue model based on hierarchically cocultured primary rat hepatocytes with liver endothelial cells. Integrative Biology (United Kingdom) 7 (2015) 33-45. http://doi.org/10.1039/c5ib00170f DOI: https://doi.org/10.1039/C5IB00170F

[35] R. Kostadinova, F. Boess, D. Applegate, L. Suter, T. Weiser, T. Singer, B. Naughton, A. Roth. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicology and Applied Pharmacology 268 (2013) 1-16. http://doi.org/10.1016/j.taap.2013.01.012 DOI: https://doi.org/10.1016/j.taap.2013.01.012

[36] Y. Liu, J. Wei, J. Lu, D. Lei, S. Yan, X. Li. Micropatterned coculture of hepatocytes on electrospun fibers as a potential in vitro model for predictive drug metabolism. Materials Science and Engineering C 63 (2016) 474-484. http://doi.org/10.1016/j.msec.2016.03.025 DOI: https://doi.org/10.1016/j.msec.2016.03.025

[37] O. Ukairo, C. Kanchagar, A. Moore, J. Shi, J. Gaffney, S. Aoyama, K. Rose, S. Krzyzewski, J. Mcgeehan, M.E. Andersen, S.R. Khetani, E.L. Lecluyse. Long-term stability of primary rat hepatocytes in micropatterned cocultures. Journal of Biochemical and Molecular Toxicology 27 (2013) 204-212. http://doi.org/10.1002/jbt.21469 DOI: https://doi.org/10.1002/jbt.21469

[38] Y. Liu, H. Li, S. Yan, J. Wei, X. Li. Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15 (2014) 1044-1054. http://doi.org/10.1021/bm401926k DOI: https://doi.org/10.1021/bm401926k

[39] S.R. Khetani, S.N. Bhatia. Microscale culture of human liver cells for drug development. Nature Biotechnology 26 (2008) 120-126. http://doi.org/10.1038/nbt1361 DOI: https://doi.org/10.1038/nbt1361

[40] S. March, V. Ramanan, K. Trehan, S. Ng, A. Galstian, N. Gural, M.A. Scull, A. Shlomai, M.M. Mota, H.E. Fleming, S.R. Khetani, C.M. Rice, S.N. Bhatia. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nature Protocols 10 (2015) 2027-2053. http://doi.org/10.1038/nprot.2015.128 DOI: https://doi.org/10.1038/nprot.2015.128

[41] W.W.W. Wang, S.R. Khetani, S. Krzyzewski, D.B. Duignan, R.S. Obach. Accelerated communication asses¬sment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites. Drug Metabolism and Disposition 38 (2010) 1900-1905. http://doi.org/10.1124/dmd.110.034876 DOI: https://doi.org/10.1124/dmd.110.034876

[42] J.M. Hutzler, B.J. Ring, S.R. Anderson. Low-turnover drug molecules: A current challenge for drug meta¬bolism scientists. Drug Metabolism and Disposition 43 (2015) 1917-1928. http://doi.org/10.1124/dmd.115.066431 DOI: https://doi.org/10.1124/dmd.115.066431

[43] P. Chao, T. Maguire, E. Novik, K.C. Cheng, M.L. Yarmush. Evaluation of a microfluidic based cell culture platform with primary human hepatocytes for the prediction of hepatic clearance in human. Biochemical Pharmacology 78 (2009) 625-632. http://doi.org/10.1016/j.bcp.2009.05.013 DOI: https://doi.org/10.1016/j.bcp.2009.05.013

[44] E. Novik, T.J. Maguire, P. Chao, K.C. Cheng, M.L. Yarmush. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochemical Pharmacology 79 (2010) 1036-1044. http://doi.org/10.1016/j.bcp.2009.11.010 DOI: https://doi.org/10.1016/j.bcp.2009.11.010

[45] I. Hultman, C. Vedin, A. Abrahamsson, S. Winiwarter, M. Darnell. Use of HμREL Human Coculture System for Prediction of Intrinsic Clearance and Metabolite Formation for Slowly Metabolized Compounds. Molecular Pharmaceutics 13 (2016) 2796-2807. http://doi.org/10.1021/acs.molpharmaceut.6b00396 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00396

[46] A. Dash, W. Inman, K. Hoffmaster, S. Sevidal, J. Kelly, R.S. Obach, L.G. Griffith, S.R. Tannenbaum. Liver tissue engineering in the evaluation of drug safety. Expert Opinion on Drug Metabolism and Toxicology 5 (2009) 1159-1174. http://doi.org/10.1517/17425250903160664 DOI: https://doi.org/10.1517/17425250903160664

[47] A. Vivares, S. Salle-Lefort, C. Arabeyre-Fabre, R. Ngo, G. Penarier, M. Bremond, P. Moliner, J.F. Gallas, G. Fabre, S. Klieber. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 45 (2015) 29-44. http://doi.org/10.3109/00498254.2014.944612 DOI: https://doi.org/10.3109/00498254.2014.944612

[48] C.M. Smith, C.K. Nolan, M.A. Edwards, J.B. Hatfield, T.W. Stewart, S.S. Ferguson, E.L. Lecluyse, J. Sahi. A comprehensive evaluation of metabolic activity and intrinsic clearance in suspensions and monolayer cultures of cryopreserved primary human hepatocytes. Journal of Pharmaceutical Sciences 101(10) (2012) 3989-4002. http://doi.org/10.1002/jps.23262 DOI: https://doi.org/10.1002/jps.23262

[49] C.-C. Peng, U. Doshi, C. Prakash, A. Li. A Novel Plated Hepatocyte Relay Assay (PHRA) for In Vitro Evaluation of Hepatic Metabolic Clearance of Slowly Metabolized Compounds. Drug Metabolism Letters 10 (2016) 3-15. http://doi.org/10.2174/1872312809666150818111500 DOI: https://doi.org/10.2174/1872312809666150818111500

[50] J. Riede, B.M. Wollmann, E. Molden, M. Ingelman-Sundberg. Primary human hepatocyte spheroids as an in vitro tool for investigating drug compounds with low hepatic clearances. Drug Metabolism and Disposition 49 (2021) 501-508. http://doi.org/10.1124/dmd.120.000340 DOI: https://doi.org/10.1124/dmd.120.000340

[51] E. Alexandre, A. Baze, C. Parmentier, C. Desbans, D. Pekthong, B. Gerin, C. Wack, P. Bachellier, B. Heyd, J.C. Weber, L. Richert. Plateable cryopreserved human hepatocytes for the assessment of cytochrome P450 inducibility: Experimental condition-related variables affecting their response to inducers. Xenobiotica 42 (2012) 968-979. http://doi.org/10.3109/00498254.2012.676693 DOI: https://doi.org/10.3109/00498254.2012.676693

[52] M. Darnell, M. Ulvestad, E. Ellis, L. Weidolf, T.B. Andersson. In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system. Journal of Pharmacology and Experimental Therapeutics 343 (2012) 134-144. http://doi.org/10.1124/jpet.112.195834 DOI: https://doi.org/10.1124/jpet.112.195834

[53] S.J. Griffin, J.B. Houston. Prediction of in vitro intrinsic clearance from hepatocytes: Comparison of suspensions and monolayer cultures. Drug Metabolism and Disposition 33 (2005) 115-120. http://doi.org/10.1124/dmd.33.1.115 DOI: https://doi.org/10.1124/dmd.33.1.115

[54] N. Blanchard, E. Alexandre, C. Abadie, T. Lavé, B. Heyd, G. Mantion, D. Jaeck, L. Richert, P. Coassolo. Comparison of clearance predictions using primary cultures and suspensions of human hepatocytes. Xenobiotica 35 (2005) 1-15. http://doi.org/10.1080/00498250400021820 DOI: https://doi.org/10.1080/00498250400021820

[55] EMA. Guideline on the investigation of drug interactions. European Medicine Agency 44 (2012) 1-59. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf

[56] C.D. Thomas, S.A. Mosley, S. Kim, K. Lingineni, N. El Rouby, T.Y. Langaee, Y. Gong, D. Wang, S.O. Schmidt, P.F. Binkley, D.S. Estores, K. Feng, H. Kim, M. Kinjo, Z. Li, L. Fang, A.B. Chapman, R.M. Cooper-DeHoff, J.G. Gums, I.S. Hamadeh, L. Zhao, S. Schmidt, R.F. Frye, J.A. Johnson, L.H. Cavallari. Examination of Metoprolol Pharmacokinetics and Pharmacodynamics Across CYP2D6 Genotype-Derived Activity Scores. CPT: Pharmacometrics and Systems Pharmacology 9 (2020) 678-685. http://doi.org/10.1002/psp4.12563 DOI: https://doi.org/10.1002/psp4.12563

[57] V.B. Boralli, E.B. Coelho, P.M. Cerqueira, V.L. Lanchote. Stereoselective analysis of metoprolol and its metabolites in rat plasma with application to oxidative metabolism. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 823 (2005) 195-202. http://doi.org/10.1016/j.jchromb.2005.06.038 DOI: https://doi.org/10.1016/j.jchromb.2005.06.038

[58] Laura Dean, Victoria M. Pratt, Stuart A. Scott, Munir Pirmohamed, Bernard Esquivel, Brandi L. Kattman, Adriana J. Malheiro. Metoprolol Therapy and CYP2D6 Genotype, Medical Genetics Summaries, Bethesda (MD): National Center for Biotechnology Information, US, 2012. https://pubmed.ncbi.nlm.nih.gov/28520381/

[59] S.-M. Huang, R. Temple, D.C. Throckmorton, L.J. Lesko. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clinical Pharmacology and Therapeutics 81 (2007) 298-304. http://doi.org/10.1038/sj.clpt.6100054 DOI: https://doi.org/10.1038/sj.clpt.6100054

[60] D.F. McGinnity, A.J. Parker, M. Soars, R.J. Riley. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metabolism and Disposition 28 (2000) 1327-1334. https://doi.org/10.1016/S0090-9556(24)15081-7 DOI: https://doi.org/10.1016/S0090-9556(24)15081-7

[61] T. Yamamoto, H. Itoga, Y. Kohno, K. Nagata, Y. Yamazoe. Prediction of oral clearance from in vitro metabolic data using recombinant CYPs: Comparison among well-stirred, parallel-tube, distributed and dispersion models. Xenobiotica 35 (2005) 627-646. http://doi.org/10.1080/00498250500159371 DOI: https://doi.org/10.1080/00498250500159371

[62] Y.R. Ma, Z. Rao, A.X. Shi, Y.F. Wang, J. Huang, M. Han, X.D. Wang, Y.W. Jin, G.Q. Zhang, Y. Zhou, F. Zhang, H.Y. Qin, X.A. Wu. Simultaneous determination of metformin, metoprolol and its metabolites in rat plasma by LC-MS-MS: Application to pharmacokinetic interaction study. Journal of Chromatographic Science 54 (2016) 1-9. http://doi.org/10.1093/chromsci/bmv097 DOI: https://doi.org/10.1093/chromsci/bmv097

[63] X. Li, G. Xing, X. Guo, Y. Wang, Z. Hu, M. Cheng, Y. Peng, J. Zheng. Identification of Metoprolol Tartrate-Derived Reactive Metabolites Possibly Correlated with Its Cytotoxicity. Chemical Research in Toxicology 35 (2022) 1059-1069. http://doi.org/10.1021/acs.chemrestox.2c00052 DOI: https://doi.org/10.1021/acs.chemrestox.2c00052

[64] B. Berger, F. Bachmann, U. Duthaler, S. Krähenbühl, M. Haschke. Cytochrome P450 enzymes involved in metoprolol metabolism and use of metoprolol as a CYP2D6 phenotyping probe drug. Frontiers in Pharmacology 9 (2018) 774. http://doi.org/10.3389/fphar.2018.00774 DOI: https://doi.org/10.3389/fphar.2018.00774

[65] P.M. Cerqueira, V.B. Boralli, E.B. Coelho, N.P. Lopes, L.F. Lopes Guimarães, P.S. Bonato, V.L. Lanchote. Enantioselective determination of metoprolol acidic metabolite in plasma and urine using liquid chromatography chiral columns: Applications to pharmacokinetics. Journal of Chromatography B 783 (2003) 433-441. http://doi.org/10.1016/S1570-0232(02)00705-5 DOI: https://doi.org/10.1016/S1570-0232(02)00705-5

[66] T. Xu, S. Bao, P. Geng, J. Luo, L. Yu, P. Pan, Y. Chen, G. Hu. Determination of metoprolol and its two metabolites in human plasma and urine by high performance liquid chromatography with fluorescence detection and its application in pharmacokinetics. Journal of Chromatography B 937 (2013) 60-66. http://doi.org/10.1016/j.jchromb.2013.08.017 DOI: https://doi.org/10.1016/j.jchromb.2013.08.017

[67] S.H. Bae, J.K. Lee, D.Y. Cho, S.K. Bae. Simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in human plasma by liquid chromatography with tandem mass spectrometry: Application to the pharmacokinetics of metoprolol associated with CYP2D6 genotypes. Journal of Separation Science 37 (2014) 1256-1264. http://doi.org/10.1002/jssc.201301353 DOI: https://doi.org/10.1002/jssc.201301353

[68] K.U. Seiler, K.J. Schuster, G.J. Meyer, W. Niedermayer, O. Wassermann. The Pharmacokinetics of Metoprolol and its Metabolites in Dialysis Patients. Clinical Pharmacokinetics 5 (1980) 192-198. http://doi.org/10.2165/00003088-198005020-00006 DOI: https://doi.org/10.2165/00003088-198005020-00006

[69] J. Fang, H.A. Semple, J. Song. Determination of metoprolol, and its four metabolites in dog plasma. Journal of Chromatography B 809 (2004) 9-14. http://doi.org/10.1016/j.jchromb.2004.05.029 DOI: https://doi.org/10.1016/j.jchromb.2004.05.029

[70] K. Bachmann, J. Byers, R. Ghosh. Prediction of in vivo hepatic clearance from in vitro data using cryopreserved human hepatocytes. Xenobiotica 33 (2003) 475-483. http://doi.org/10.1080/0049825031000076177 DOI: https://doi.org/10.1080/0049825031000076177

[71] J. Brian Houston. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochemical Pharmacology 47 (1994) 1469-1479. http://doi.org/10.1016/0006-2952(94)90520-7 DOI: https://doi.org/10.1016/0006-2952(94)90520-7

[72] B. Davies, T. Morris. Physiological parameters in laboratory animals and humans. Pharmaceutical Research 10 (1993) 1093-1095. http://doi.org/10.1023/A:1018943613122 DOI: https://doi.org/10.1023/A:1018943613122

[73] J. Louisse, M. Alewijn, A.A.C.M. Peijnenburg, N.H.P. Cnubben, M.B. Heringa, S. Coecke, A. Punt. Towards harmonization of test methods for in vitro hepatic clearance studies. Toxicology in Vitro 63 (2020) 104722. http://doi.org/10.1016/j.tiv.2019.104722 DOI: https://doi.org/10.1016/j.tiv.2019.104722

[74] S.J. Griffin, J.B. Houston. Comparison of fresh and cryopreserved rat hepatocyte suspensions for the prediction of in vitro intrinsic clearance. Drug Metabolism and Disposition 32 (2004) 552-558. http://doi.org/10.1124/dmd.32.5.552 DOI: https://doi.org/10.1124/dmd.32.5.552

[75] C. Quarterman, M. Kendall, D. Jack. The effect of age on the pharmacokinetics of metoprolol and its metabolites. British Journal of Clinical Pharmacology 11 (1981) 287-294. http://doi.org/10.1111/j.1365-2125.1981.tb00536.x DOI: https://doi.org/10.1111/j.1365-2125.1981.tb00536.x

[76] R.M. Borkar, M.M. Bhandi, A.P. Dubey, V. Ganga Reddy, P. Komirishetty, P.P. Nandekar, A.T. Sangamwar, A. Kamal, S.K. Banerjee, R. Srinivas. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS. Biomedical Chromatography 30 (2016) 1556-1572. http://doi.org/10.1002/bmc.3721 DOI: https://doi.org/10.1002/bmc.3721

[77] B. Ma, R. Eisenhandler, Y. Kuo, P. Rearden, Y. Li, P.J. Manley, S. Smith, K. Menzel. Prediction of Metabolic Clearance for Low-Turnover Compounds Using Plated Hepatocytes with Enzyme Activity Correction. European Journal of Drug Metabolism and Pharmacokinetics 42 (2017) 319-326. http://doi.org/10.1007/s13318-016-0336-3 DOI: https://doi.org/10.1007/s13318-016-0336-3

Published

30-10-2025

Issue

Section

Pharmacokinetics and toxicology

How to Cite

Elucidating CYP2D6-driven metabolism and hepatotoxic bioactivation of metoprolol in plateable human and animal hepatocytes: Original scientific paper. (2025). ADMET and DMPK, 2961. https://doi.org/10.5599/admet.2961

Similar Articles

11-20 of 162

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)