Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

Authors

  • Dimitra Vernardou Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, 710 04 Heraklion, Crete
  • Antonia Bei Department of Mechanical Engineering, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete
  • Dimitris Louloudakis Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, 710 04 Heraklion, Crete and Department of Physics, University of Crete 711 00 Heraklion, Crete
  • Nikolaos Katsarakis Center of Materials Technology and Photonics, School of Engineering, Technological Educational Institute of Crete, 710 04 Heraklion, Crete; Department of Electrical Engineering, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete and Institute of Electronic Structure & Laser, Foundation for Research & Technology- Hellas, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete
  • Emmanouil Koudoumas Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete and Institute of Electronic Structure & Laser, Foundation for Research & Technology- Hellas, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete

DOI:

https://doi.org/10.5599/jese.278

Keywords:

Atmospheric pressure chemical vapor deposition, O2 source, Vanadium dioxide, Electrochemical properties.

Abstract

Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

Downloads

Download data is not yet available.

References

M. Rahman, J. Z. Wang, N. H. Idris, Z. Chen, H. Liu, Electrochim. Acta 56 (2010) 693.

C. V. Subba Reddy, E. H. Walker Jr., S. Wicker Sr., Q. L. Williams, R. R. Kalluru, Curr. Appl. Phys. 9 (2009) 1195.

D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis, E. Koudoumas, Int. J. Thin Film Sci. Tech. 4 (2015) 187.

E. Baudrin, G. Sudant, D. Larcher, B. Dunn, J. M. Tarascon, Chem. Mater. 18 (2006) 4369.

F. Wang, Y. Liu, C. Liu, Electrochim. Acta 55 (2010) 2662.

Y. Shi, S. -L. Chou, J. -Z. Wang, H. -J. Li, H. -K. Liu, Y. -P. Wu, J. Power Sources 244 (2013) 684.

H. M. Liu, Y. G. Wang, K. X. Wang, E. Hosono, H. S. Zhou, J. Mater. Chem. 19 (2009) 2835.

H. Liu, Y. Wang, L. Li, K. Wang, E. Hosono, H. Zhou, J. Mater. Chem. 19 (2009) 7885.

S. Zhang, Y. Li, C. Wu, F. Zheng, Y. Xie, J. Phys. Chem. C 113 (2009) 15058.

L. Deng, G. Zhang, L. Kang, Z. Lei, C. Liu, Z. -H. Liu, Electrochim. Acta 112 (2013) 448.

H. Wang, H. Yi, X. Chen, X. Wang, J. Mater. Chem. A 2 (2014) 1165.

L. Liang, H. Liu, W. Yang, J. Alloys Compd. 559 (2013) 167.

X. Pan, Y. Zhao, G. Ren, Z. Fan, Chem. Commun. 49 (2013) 3943.

C. P. Parkin, J. Nano Res. 2 (2008) 1.

M. Maaza, K. Bouziane, J. Maritz, D. S. McLachlan, R. Swanepool, J. M. Frigerio, M. Every, Opt. Mater. 15 (2000) 41.

J. B. K. Kana, J. M. Ndjaka, P. O. Ateba, B. D. Ngom, N. Manyala, O. Nemraoui, A. C. Beye, M. Maaza, Appl. Surf. Sci. 254 (2008) 3959.

C. L. Choy, Prog. Mater. Sci. 48 (2003) 57.

M. B. Sahana, M. S. Dharmaprakash, S. A. Shivashankar, J. Mater. Chem. 12 (2002) 333.

M. B. Sahana, S. A. Shivashankar, J. Mater. Res. 19 (2004) 2859.

M. N. Field, I. P. Parkin, J. Mater. Chem. 10 (2000) 1863.

T. D. Manning, I. P. Parkin, M. E. Pemble, D. Sheel, D. Vernardou, Chem. Mater. 16 (2004) 744.

T. D. Manning, I. P. Parkin, R. J. H. Clark, D. Sheel, M. E. Pemble, D. Vernardou, J. Mater. Chem. 12 (2002) 2936.

D. Vernardou, M. E. Pemble, D. W. Sheel, Chem. Vapor Depos. 12 (2006) 263.

D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, Chem. Vapor Depos. 21 (2015) 1.

T. D. Manning, I. P. Parkin, Polyhedron 23 (2004) 3087.

L. Kritikos, L. Zambelis, G. Papadimitropoulos, D. Davazoglou, Surf. Coat. Tech. 201 (2007) 9334.

S. Mathur, T. Ruegamer, I. Grobelsek, Chem. Vap. Deposition 13 (2007) 42.

D. Vernardou, D. Louloudakis, E. Spanakis, N. Katsarakis, E. Koudoumas, Sol. Energ. Mat. Sol. C. 128 (2014) 36.

Y. Muraoka, Z. Hiroi, Appl. Phys. Lett. 80 (2002) 583.

G. Garry, O. Durand, A. Lordereau, Thin Solid Films 453 (2004) 427.

Y. Zhang, R. Wang, Z. Qiu, X. Wu, Y. Li, Mater. Lett. 131 (2014) 42.

D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, J. Colloid Interf. Sci. 424 (2014) 1.

D. Vernardou, A. Sapountzis, E. Spanakis, G. Kenanakis, E. Koudoumas, N. Katsarakis, J. Electrochem. Soc. 160 (2013) D6.

D. Vernardou, M. Apostolopoulou, D. Louloudakis, E. Spanakis, N. Katsarakis, E. Koudoumas, J. McGrath, M.E. Pemble, J. Alloy. Compd. 586 (2014) 621.

B. D. Ngom, M. Chaker, A. Diallo, I. G. Madiba, S. Khamlich, N. Manyala, O. Nemraoui, R. Madjoe, A. C. Beye, M. Maaza, Acta Mater. 65 (2014) 32.

X. Wu, Y. Tao, L. Dong, Z. Wang, Z. Hu, Mater. Res. Bull. 40 (2005) 315.

J. Shi, S. Zhou, B. You, L. Wu, Sol. Energ. Mat. Sol. C 91 (2007) 1856.

J. B. Kana Kana, J. M. Ndjaka, B. D. Ngom, N. Manyala, O. Nemraoui, A. Y. Fasari, R. Nemutudi, A. Gibaud, D. Knoesen, M. Maaza, Thin Solid Films 518 (2010) 1641.

E. Elangovan, K. Ramamurthi, Thin Solid Films 476 (2005) 231.

D. Vernardou, M. E. Pemble, D. W. Sheel, Thin Solid Films 516 (2008) 4502.

G. I. N. Waterhouse, G. A. Bowmaker, J. B. Metson, Appl. Catal. A Gen. 266 (2004) 257

P. Forzatti, E. Tronconi, A. S. Elmi, G. Busca, Appl. Catal. A Gen. 157 (1997) 387.

T. –W. Chiu, K. Tonooka, N. Kikuchi, Thin Solid Films 518 (2010) 7441.

M. Ohring, The Materials Science of Thin Films, Academic Press, London, 1992.

K. Lee, G. Cao, J. Phys. Chem. B 109 (2005) 11880.

D. Vernardou, I. Marathianou, N. Katsarakis, E. Koudoumas, I. I. Kazadojev, S. O’ Brien, M. E. Pemble, I. M. Povey, Electrochim. Acta 196 (2016) 294.

J. Qin, W. Lv, Z. Li, B. Li, F. Kang, Q. –H. Yang, Chem. Commun. 50 (2014) 13447.

Y. Wu, P. Zhu, X. Zhao, M. V. Reddy, S. Peng, B. V. R. Chowdari, S. Ramakrishna, J. Mater. Chem. A 1 (2013) 852.

Published

09-06-2016

How to Cite

Vernardou, D., Bei, A., Louloudakis, D., Katsarakis, N., & Koudoumas, E. (2016). Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications. Journal of Electrochemical Science and Engineering, 6(2), 165–173. https://doi.org/10.5599/jese.278

Issue

Section

Electrochemical Science