V2O5 as magnesium cathode material with extended cyclic stability
DOI:
https://doi.org/10.5599/jese.769Keywords:
Magnesium ion batteries, chemical vapor deposition, electrode morphology, coating adherence, corrosive environmentAbstract
In this work, the electrochemical performance of aerosol-assisted chemical vapour deposited vanadium pentoxide cathodes at 600 °C, is presented. The as-grown oxides indicate specific discharge capacity of 300 mA h g-1 with capacity retention of 92 % after 10000 scans, coulombic efficiency of 100 %, noble structural stability and high reversibility. The present study shows the possibility to grow large-area magnesium cathode material with extended cycle stability via utilization of an aqueous electrolyte under a corrosive environment. This enhanced performance may be a combination of electrode morphology and adherence, when compared to previous work employing electrode growth temperature at 500 °C.
Downloads
References
H. Ao, Y. Zhao, J. Zhou, W. Cai, X. Zhang, Y. Zhu, Y. Qian, Journal of Materials Chemistry A 7 (2019) 18708-18734.
J. F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed, S. E. Chun, E. Weber, D. Blackwood, E. Lynch-Bell, J. Gulakowski, C. Smith, D. Humphreys, Journal of Power Sources 213 (2012) 255-264.
J. L. Andrews, A. Mukherjee, H. DeogYoo, A. Parija,P. M. Marley, S. Fakra, D. Prendergast, J. Cabana, R. F. Klie, S. Banerjee, Chem 4 (2018) 564-585.
J. O. Besenhard, M. Winter, ChemPhysChem 3 (2002) 155-159.
M. Matsui, Journal of Power Sources, 196 (2011) 7048-7055.
R. Attias, M. Salama, B. Hirsch, Y. Gofer, D. Aurbach, ChemElectroChem 5 (2018) 3514-3524.
C. Drosos, C. Jia, S. Mathew, R. G. Palgrave, B. Moss,A. Kafizas, D. Vernardou, Journal of Power Sources 384 (2018) 355-359.
D. Vernardou, M. Apostolopoulou, D. Louloudakis, N. Katsarakis, E. Koudoumas, Journal of Colloid and Interface Science 424 (2014) 1-6.
B. Saravanakumar, C. Selvam,G. Ravi, M. Thambidurai, R. Yuvakkumar, AIP Conference Proceedings 1992 (2018) 040028.
Y.-H. Zhu,Q. Zhang,X. Yang,E.-Y. Zhao,T. Sun,X.-B. Zhang,S. Wang, X.-Q. Yu,J.-M. Yan, Q. Jiang, Chem 5 (2019) 168-179.
M. Lv, D. Zheng, M. Ye, L. Sun, J. Xiao, W. Guo, C. Lin, Nanoscale 4 (2012) 5872-5879.
S.Tepavcevic, Y. Liu,D. Zhou, B. Lai, J. Maser, X. Zuo,H. Chan,P. Král,C. S. Johnson, V. Stamenkovic, N. M. Markovic,T. Rajh, ACS Nano 9 (2015) 8194-8205.
Z. Xie, J. Lai, X.Zhu,Y. Wang, ACS Applied Energy Materials 111 (2018) 6401-6408.
H. Zhang, K. Ye, X. Huang, X. Wang, K. Cheng, X. Xiao, G. Wang, D. Cao, Journal of PowerSources 338 (2017) 136-144.
H. Zhang, K. Ye, K. Zhu, R. Cang, J. Yan, K. Cheng, G. Wang,D. Cao, Chemistry-A European Journal 23 (2017) 17118-17126.
H. Zhang, K. Ye, S. Shao, X. Wang, K. Cheng, X. Xiao, G. Wang, D. Cao, Electrochimica Acta 229 (2017) 371-379.
G. Niu, W. Li, F. Meng, L. Wang, H. Dong and Y. Qiu, Journal of Materials Chemistry A 2 (2014) 705-710.
J. Park, J. Woo Choi, W. Kim, R. Lee, H. Chul Woo, J. Shin, H. Kim, Y. Jun Son, J. Young Jo, H. Lee, S. Kwon, C. -L. Lee, G. Young Jung, RSC Advances 9 (2019) 14868-14875.
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J.-M. Tarascon, Nature Materials 11 (2012) 19-29.
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.