Atomic layer deposited V2O5 coatings: a promising cathode for Li-ion batteries

  • Martyn Pemble Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland and School of Chemistry, University College Cork, Cork
  • Ian Povey Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork
  • Dimitra Vernardou Hellenic Mediterranean University, Department of Electrical & Computer Engineering, School of Engineering, Estavromenos, 710 04 Heraklion, Crete
Keywords: Pulsed-CVD, vanadium pentoxide, Li intercalation/deintercalation, cyclic voltammetry, cycling stability, electron transport properties


A modified, thermal atomic layer deposition process was employed for the pulsed chemical vapor deposition growth of vanadium pentoxide films using tetrakis (dimethylamino) vanadium and water as a co-reagent.Depositions were carried out at 350oC for 400 pulsed CVD cycles, and samples were subsequently annealed for 1hour at 400°C in air to form materials with enhanced cycling stability during the continuous lithium-ion intercala­tion/deintercalation processes. The diffusion coefficient was estimated to be 2.04x10-10 and 4.10x10-10 cm2 s-1 for the cathodic and anodic processes, respectively. These values are comparable or lower than those reported in the literature, indicating the capability of Li+ of getting access into the vanadium pentoxide framework at a fast rate. Overall, it presents a specific discharge capacity of 280 mAh g-1, capacity retention of 75 % after 10000 scans, a coulombic efficiency of 100 % for the first scan, dropping to 85 % for the 10000th scan, and specific energy of 523 Wh g-1.


Download data is not yet available.


G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang, A. L. -S. Eh, P. S. Lee, Nano Energy 12 (2015) 258-267.

P. Rüetschi, Journal of Power Sources 42 (1993)1-7.

B. Xu, D. Qian, Z. Wang, Y. S. Meng, Materials Science and Engineering: Reports 73 (2012) 51-65.

D-J. Yan, X–D. Zhu, K–X. Wang, X–T. Gao, Y–J. Feng, K–N. Sun, Y–T. Liu, Journal of Materials Chemistry A 4 (2016) 4900-4907.

Y. Wang, G. Cao, Advanced Materials 20 (2008) 2251-2269.

J. Liu, H. Xia, D. Xue, L. Lu, Journal of the American Chemical Society 131 (2009) 12086-12087.

S–H. Ng, T. J.Patey, R.Buchel, F. Krumeich, J–Z. Wang, H–K. Liu, S. E. Pratsinis, P. Novák, Physical Chemistry Chemical Physics 11 (2009) 3748-3755.

Y. Wei, C–W. Ryu, K–B. Kim, Journal of Power Sources 165 (2007) 386-392.

D. W. Su, S. X. Dou, G. X. Wang, Journal of Materials Chemistry A 2(2014) 11185-11194.

W. Cheng, G. Zeng, M. Niederberger, Journal of Materials Chemistry A 3 (2015)2861-2868.

G. Li, Y. Qiu, Y. Hou, H. Li, L. Zhou, H. Deng, Y. Zhang, Journal of Materials Chemistry A 3 (2015) 1103-1109.

A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Energy Environmental Science 1 (2008) 621-638.

F. Mattelaer, K. Geryl, G. Rampelberg, T. Dobbelaere, J. Dendooven, C. Detavernier, RSC Advances 6 (2016) 11465-114665.

J. C. Badot, S. Ribes, E. B. Yousfi, V. Vivier, J. P. Pereira-Ramos, N. Baffier, D. Lincot, Electrochemical and Solid-State Letters 3 (2000) 485-488.

X. Chen, H. Zhu, Y–C. Chen, Y. Shang, A. Cao, L. Hu, G. W. Rubloff, ACS Nano 6 (2012) 7948-7955.

X. Chen, E. Pomerantseva, P. Banerjee, K. Gregorczyk, R. Ghodssi, G. Rubloff, Chemistry of Materials 24 (2012) 1255-1261.

M. Xie, X. Sun, H. Sun, T.Porcelli, S. M. George, Y. Zhou, J. Lian, Journal of Materials Chemistry A 4 (2016) 537-544.

I. I. Kazadojev, S. O’Brien, L. P. Ryan, M. Modreanu, P. Osiceanu, S. Somacescu, D. Vernardou, M. E. Pemble, I. M. Povey, ECS Transactions 85 (2018) 83-94.

D. Vernardou, K. C. Vasilopoulos, G. Kenanakis, Applied Physics A 123 (2017) 623-7.

D. Vernardou, A. Kazas, M. Apostolopoulou, N. Katsarakis, E. Koudoumas, Journal of Electronic Materials 46 (2017) 2232-2240.

D. Vernardou, I. Marathianou, N. Katsarakis, E. Koudoumas, I. I.Kazadojev, S. O’Brien, M. E. Pemble, I. M. Povey, Electrochimica Acta 196 (2016) 294-299.

C. Drosos, C. Jia, S. Mathew, R. G. Palgrave, B. Moss, A. Kafizas, D. Vernardou, Journal of Power Sources 384 (2018) 355-359.

M. Panagopoulou, D. Vernardou, E. Koudoumas, N. Katsarakis, D. Tsoukalas, Y. S. Raptis, Journal of Physical Chemistry C 121 (2017) 70-79.

T. M. Westphal, C. M. Cholant, C. F. Azevedo, E. A. Moura, D. L. da Silva, R. M. J. Lemos, A. Pawlicka, A. Gündel, W. H. Flores, C. O. Avellaneda, Journal of Electroanalytical Chemistry 790 (2017) 50-56.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B–L. Su, Y. Li, Journal of Materials Chemistry C 2 (2014) 3651-3658.

H. Yu, X. Rui, H. Tan, J. Chen, X. Huang, C. Xu, W. Liu, D. Y. W. Yu, H. H. Hng, H. E.Hoster, Q. Yan, Nanoscale 5 (2013) 4937-4943.

S. Bach, J. P. Pereira-Ramos, P. Williams, Electrochimica Acta 55 (2010) 4952-4959.

N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Journal of Power Sources 139 (2005) 250-260.

A. Kostopoulou, D. Vernardou, K. Savva, E. Stratakis, Nanoscale 11 (2019) 882-889.

X. Chen, E. Pomerantseva, K. Gregorczyk, R. Ghodssr, G. Rubloff, RSC Advances 3 (2013) 4294-4302.

Electrochemical Science