Post-heat treatment of electrochemically carburized low-carbon steel

Original scientific paper


  • Chan On Sow Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
  • Wong Min Jin Karen Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
  • Saffuan Awg Bahrin Mechanical Engineering Department, Politeknik Kota Kinabalu, Jalan Politeknik, Kota Kinabalu Industrial Park, Kota Kinabalu 88460, Sabah, Malaysia
  • Bih Lii Chua Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
  • Gan Jet Hong Melvin Centre of Research in Energy and Advanced Materials, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
  • Nancy Julius Siambun Centre of Research in Energy and Advanced Materials, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia



Steel, electrochemical carburization, molten salt, quenching; tempering, annealing
Graphical Abstract


Limited studies are available on post-heat treatment (tempering/annealing) of electro­chemically carburized low-carbon steel, which can relieve internal stresses induced by the quenching process. In this study, the electrochemical carburization was carried out using the electrolyte mixture of sodium carbonate (Na2CO3) and sodium chloride (NaCl) under a CO2 gas environment and 800 °C. The samples were then quenched in either water or oil. The peak hardness of the water-quenched sample (WQ) was higher than the oil-quenched sample (OQ). Comparatively, post-heat treated (tempered and annealed) samples showed lower peak hardness compared to quenched samples. An optical microscope was used to observe microstructural changes, while X-ray diffraction (XRD) was used to examine metal phases within all samples. The full width at half maximum (FWHM) of the martensite peak supported the stress relief in both tempered and annealed samples. Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) was applied to determine the elemental composition of as received and electrochemically carburized and quenched low-carbon steel samples. The carbon content of the WQ sample was relatively higher than the OQ sample, whereas the tempered samples showed higher carbon content compared to the annealed samples, but both were lower than for quenched samples. Electrochemical carburization increased the carbon content and improved the hardness, while the tempering or annealing process relieved internal stresses that resulted in the hardness reduction.


Download data is not yet available.


A. Di Gianfrancesco, Technologies for chemical analyses, microstructural and inspection investigations in: Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, A. Di Gianfrancesco, Ed., Woodhead Publishing, Sawston, Cambridge, 2017, 197-245.

P. Smith, Metallic Materials for Piping Components in: The Fundamentals of Piping Design, P. Smith, Ed.,Gulf Publishing Company, Houston, Texas, 2007, 115-136.

E. J. Pavlina, C. J. Van Tyne, Correlation of Yield strength and Tensile strength with hardness for steels, Journal of Materials Engineering and Performance 17 (2008) 888-893.

G. S. O. Savabi, F. Nejatidanesh, M. H. Fathi, A. Navabi, Evaluation of hardness and wear resistance of interim restortive materials, Dental Research Journal 10(2) (2013) 184-189.

R. Evans, Selection and testing of metalworking fluids in: Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances, V. P. Astakhov, S. Joksch, Eds., Woodhead Publishing, Sawston, Cambridge, 2012, 23-78.

S. C. On, S. A. Bahrin, M. Gakim, W. Y. H. Liew, F. M. Tamiri, N. J. Siambun, A review on the development of electro-carburisation process, IOP Conference Series: Materials Science and Engineering 1217 (2022) 012010.

N. J. Siambun, D. A. Jewell, G. Z. Chen, Influence of CO2 Gas in the Electro-Carburisation of Mild Steel, International Journal of Chemical Engineering and Applications 6(5) (2015) 341-345.

N. J. Siambun, H. Mohamed, D. Hu, D. Jewell, Y. K. Beng, G. Z. Chen, Utilisation of Carbon Dioxide for Electro-Carburisation of Mild Steel in Molten Carbonate Salts, Journal of The Electrochemical Society 158(11) (2011) H1117.

L. Y. H. Willey, J. L. J. Ling, N. J. Siambun, Sliding wear behaviour of steel carburized using Na2CO3-NaCl, MATEC Web of Conferences 87 (2016) 02010.

S. N. Abdullah, N. Sazali, A. S. Jamaludin, Study on Thickness of Low Carbon Steel in Rapid Cooling Process, Journal of Modern Manufacturing Systems and Technology 4 (2020) 52-59.

J. Grum, S. Božič, M. Zupančič, Influence of quenching process parameters on residual stresses in steel, Journal of Materials Processing Technology 114 (2001) 57-70.

M. A. Kowser, M. A. Motalleb, Effect of quenching medium on hardness of carburized low carbon steel for manufacturing of spindle used in spinning mill, Procedia Engineering 105 (2015) 814-820.

S. A. Bahrin, W. L. Y. Liew, J. A. Janaun, S. K. A. Uvarajan, N. J. Siambun, The Influence of Quenching Medium on the Hardness and Microstructure of Electro-Carburised Low Carbon Steel, The 1st Conference on Engineering, Technology and Education, Politeknik Merlimau Melaka, Malaysia, 2016, 148-154.

S. Masoudi, G. Amirian, E. Saeedi, M. Ahmadi, The Effect of Quench-Induced Residual Stresses on the Distortion of Machined Thin-Walled Parts, Journal of Materials Engineering and Performance 24 (2015) 3933-3941.

P. Fu, R. Chu, Z. Xu, G. Ding, C. Jiang, Relation of hardness with FWHM and residual stress of GCr15 steel after shot peening, Applied Surface Science 431 (2018) 165-169.

V. D. Panchal, Relieving stress in stainless steels, World Pumps 2013 (2013) 28-32.

S. N. Abdullah, N. Sazali, A Mini Review on Low Carbon Steel in Rapid Cooling Process, Journal of Advanced Research in Materials Science 68(1) (2020) 1-7.

I. O. Oladele, D. B. Alonge, T. O. Betiku, E. O. Igbafen, B. O. Adewuyi, Performance Evaluation of the Effects of Post Weld Heat Treatment on the Microstructure, Mechanical and Corrosion Potentials of Low Carbon Steel, Advanced Technologies and Materials 44(1) (2019) 41-47.

W. Y. H. Liew, R. Protasius, J. L. J. Ling, N. J. Siambun, N. A. Mohd-Lair, Reciprocating wear behavior of mild steel carburized using Na2CO3-NaCl, Tribology International 95 (2016) 406-418.

S. Dewangan, N. Mainwal, M. Khandelwal, P. S. Jadhav, Performance analysis of heat treated AISI 1020 steel samples on the basis of various destructive mechanical testing and microstructural behaviour, Australian Journal of Mechanical Engineering 20 (2022) 74-87.

I. F. MacHado, Technological advances in steels heat treatment, Journal of Materials Processing Technology 172 (2006) 169-173.

S. M. M. Rahman, K. E. Karim, M. H. S. Simanto, Effect of Heat Treatment on Low Carbon Steel: An Experimental Investigation, Applied Mechanics and Materials 860 (2016) 7-12.

A. Çalik, Effect of cooling rate on hardness and microstructure of AISI 1020, AISI 1040 and AISI 1060 Steels, International Journal of Physical Sciences 4(9) (2009) 514-518.

T. Kanwal, R. Nazir, S. Zulqernain, A. Salam, & Javaid Ahmad, Quench Hardening and Tempering Behaviour of A Low Carbon Steel, Journal of Pakistan Institute of Chemical Engineers 37 (2009) 51-53.

A. Rafaaltaweel, M. Tolouei-Rad, Effect of Quenching Media, Specimen Size and Shape on the Hardenability of Aisi 4140 Steel, Emirates Journal for Engineering Research 19(2) (2014) 33-39

F. Nazari, M. Honarpisheh, H. Zhao, Effect of stress relief annealing on microstructure, mechanical properties, and residual stress of a copper sheet in the constrained groove pressing process, International Journal of Advanced Manufacturing Technology 102 (2019) 4361-4370.

V. Llaneza, F. J. Belzunce, Study of the effects produced by shot peening on the surface of quenched and tempered steels: Roughness, residual stresses and work hardening, Applied Surface Science 356 (2015) 475-485.

S. Dewangan, V. Vinod, K. Harshal, P. Manak, S. Ravikumar, M. Kr. Chowrasia, A discussion on mechanical behaviour of Heat-Treated low carbon steel. Materials Today: Proceedings 63 (2022) 362-367.

D. H. Shin, B. C. Kim, Y. S. Kim, K. T. Park, Microstructural evolution in a commercial low carbon steel by equal channel angular pressing, Acta Materialia 48 (2000) 2247-2255.

M. Zorc, A. Nagode, M. Bizjak, B. Zorc, Decarburization of the Carbon Steel C45 During Annealing in Air, Materials and Geoenvironment 65 (2018) 167-178.

M. Campos, S. Kremel, T. M. Puscas, Y. Yu, D. Sánchez, J. M. Torralba, Effect of heat treatments on Cr-Mo steels based on astraloy CrM powder grade with manganese additions, Materials Science Forum 416-418 (2003) 82-88.

N. M. Ismail, N. A. A. Khatif, M. A. K. A. Kecik, M. A. H. Shaharudin, The effect of heat treatment on the hardness and impact properties of medium carbon steel, IOP Conference Series: Materials Science and Engineering 114 (2016) 012108.

Y. Choi, W. Yong Choo, D. Kwon, Analysis of mechanical property distribution in multiphase ultra-fine-grained steels by nanoindentation, Scripta Materialia 45 (2001) 1401-1406.

P. K. Jena, B. Mishra, M. RameshBabu, A. Babu, A. K. Singh, K. SivaKumar, T. B. Bhat, Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel, International Journal of Impact Engineering 37 (2010) 242-249.

S. Ayyildiz, E. H. Soylu, S. Ide, S. Kiliç, C. Sipahi, B. Pişkin, H. S. Gökçe, Annealing of Co-Cr dental alloy: Effects on nanostructure and Rockwell hardness, Journal of Advanced Prosthodontics 5 (2013) 471-478.

T. Aljohani, M. Geesi, A. Kaiba, F. Khoshnaw, The impact of gamma radiation on the corrosion properties of carbon steel and stainless steel, European Corrosion Congress (EUROCORR 2019), Seville, Spain, 2019, 1-15.

Y. Yang, M. F. Yan, Y. X. Zhang, Tribological behavior of diamond-like carbon in-situ formed on Fe 3 C-containing carburized layer by plasma carburizing, Applied Surface Science 479 (2019) 482-488.

Yusmaniar, W. A. Adi, Y. Taryana, R. Muzaki, Synthesis and Characterization of Composite UPR/Fe3O4 for Its Use as Electromagnetic Wave Absorber, IOP Conference Series: Materials Science and Engineering 196 (2017) 4-8.

D. E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T. D. Mekuria, A. H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Results in Physics 12 (2019) 1253-1261.

M. Vashista, S. Paul, Correlation between full width at half maximum (FWHM) of XRD peak with residual stress on ground surfaces, Philosophical Magazine 92 (2012) 4194-4204.

S. Priyadarshini, T. Sharma, G. Arora, Effect of Post Carburizing Treatment on Hardness of Low Carbon Steel, International Journal of Advanced Mechanical Engineering 4 (2014) 763-766.

M. Zhang, C. Chen, L. Qin, K. Yan, G. Cheng, H. Jing, T. Zou, Laser additive manufacturing of M2 high-speed steel, Materials Science and Technology 34 (2018) 69-78.


19-02-2023 — Updated on 19-02-2023

How to Cite

Chan On Sow, Jin Karen, W. M., Bahrin, S. A., Chua, B. L., Hong Melvin, G. J., & Julius Siambun, N. (2023). Post-heat treatment of electrochemically carburized low-carbon steel: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 421–436.



Electrochemical Engineering