Often neglected steps in transforming drug solubility from single measurement in pure water to physiologically-appropriate solubility-pH

Commentary

Authors

DOI:

https://doi.org/10.5599/admet.2626

Keywords:

solubility-pH, constant ionic medium, weakly-ionizable drugs, calculated saturation pH, Stokes-Robinson hydration theory, salting-out, ambient dissolved CO2, analytic continuation to a full solubility-pH profile

Abstract

Background and purpose: The solubility of weakly-ionizable drugs in pure water, Sw, is commonly measured. The pH-dependent properties of the saturated solutions can be surprisingly complex in subtle ways.  This commentary examines the characteristics of such measurements through case studies of 32 free acids, bases, and ampholytes (including crocetin, glibenclamide, mellitic acid, quercetin, bedaquiline, brigatinib, imatinib, celecoxib, and lysine), using published water solubility data. Computational approach: Usually, in such saturated solutions, the ionic strength, Iw, is close to zero.  When the pH is adjusted away from pHw, the ionic strength increases, substantially in some cases (e.g. Iw > 10 M at pH 7.4 for mellitic acid and lysine). This change in ionic strength alters the activities of the species in solution. The corresponding equilibrium constants used to calculate the concentrations of these species must be adjusted accordingly.  Here, the Stokes-Robinson hydration theory, slightly modified with Setschenow ‘salting-out’ constants to account for solvent interactions with unionized drugs, was used to estimate activity coefficients.  The calculations were performed with the pDISOL-X program.  Key results: Given reliably-measured values of Sw and pKa of the drugs and assuming that the Henderson-Hasselbalch equation is valid, a method is described for (i) adjusting the measured Sw values at ionic strength, Iw ~ 0 M, to values expected at Iref = 0.15 M (or at any other reasonable reference value), (ii) determining the water pHw in saturated solutions of added neutral-form drugs; (iii) determining the intrinsic solubility, S0, both at Iw and Iref, and (iv) using analytic-continuation in the equilibrium mass action model to deduce the solubility values as a function of pH, harmonized to a selected Iref.  For highly soluble drugs, whose Iw exceeds 0.15 M, the intrinsic solubility values appear to depend on the amount of excess solid added. Conclusion: This commentary re-emphasizes that measured Sw is not generally the same as S0.  It is stressed that transforming measured drug solubility in pure water to an ionic strength level that is physiologically appropriate would better match the conditions found in biological media, potentially improving applications of solubility in pharmaceutical research and development.

Downloads

Download data is not yet available.

References

A. Avdeef, M. Kansy. Predicting solubility of newly-approved drugs (2016-2020) with a simple ABSOLV and GSE(Flexible-Acceptor) Consensus Model outperforming random forest regression. Journal of Solution Chemistry 51 (2022) 1020-1055. https://doi.org/10.1007/s10953-022-01141-7

A. Avdeef, M. Kansy. Trends in physchem properties of newly approved drugs over the last six years, predicting solubility of drugs approved in 2021. Journal of Solution Chemistry 51 (2022) 1455-1481. https://doi.org/10.1007/s10953-022-01199-3

A. Avdeef. Predicting Solubility of New Drugs - Handbook of Critically Curated Data for Pharmaceutical Research. CRC Press, Boca Raton, FL, USA, 2024. ISBN: 978-1032617671.

A. Avdeef. Suggested improvements for measurement of equilibrium solubility-pH of ionizable drugs. ADMET & DMPK 3 (2015) 84-109. https://doi.org/10.5599/admet.3.2.193

A. Avdeef, E. Fuguet, A. Llinàs, C. Ràfols, E. Bosch, G. Völgyi, T. Verbić, E. Boldyreva, K. Takács-Novák. Equilibrium solubility measurement of ionizable drugs - consensus recommendations for improving data quality. ADMET & DMPK 4 (2016) 117-178. https://doi.org/10.5599/admet.4.2.292

A. Ono, N. Matsumura, T. Kimoto, Y. Akiyama, S. Funaki, N. Tamura, S. Hayashi, Y. Kojima, M. Fushimi, H. Sudaki, R. Aihara, Y. Haruna, M. Jiko, M. Iwasaki, T. Fujita, K. Sugano. Harmonizing solubility measurement to lower inter-laboratory variance - progress of consortium of biopharmaceutical tools (CoBiTo) in Japan. ADMET & DMPK 7 (2019) 183-195. https://doi.org/ 10.5599/admet.704

M. Vertzoni, J. Alsenz, P. Augustijns, A. Bauer-Brandl, C.A.S. Bergström, J. Brouwers, A. Müllerz, G. Perlovich, C. Saal, K. Sugano, C. Reppas. UNGAP best practice for improving solubility data quality of orally administered drugs. European Journal of Pharmaceutical Sciences 168 (2022) 106043. https://doi.org/10.1016/j.ejps.2021.106043

D. J. W. Grant, T. Higuchi. Solubility Behavior of Organic Compounds, Wiley-Interscience: New York, 1990. ISBN:0471613142.

A. Avdeef, J.J. Bucher. Accurate measurements of the concentration of hydrogen ions with a glass electrode: calibrations using the Prideaux and other universal buffer solutions and a computer-controlled automatic titrator. Analytical Chemistry 50 (1978) 2137-2142. https://doi.org/10.1021/ac50036a045

M.H. Abraham, J. Le. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. Journal of Pharmaceutical Sciences 88 (1999) 868-880. https://doi.org/10.1021/js9901007

E. Rytting, K.A. Lentz, X.Q. Chen, F. Qian, S. Venkatesh. A quantitative structure-property relationship for predicting drug solubility in PEG 400/water cosolvent systems. Pharmaceutical Research 21 (2004) 237-244. https://doi.org/10.1023/b:pham.0000016237.06815.7a

A. Avdeef. Absorption and Drug Development, 2nd Ed., Wiley-Interscience, Hoboken NJ, 2012. ISBN 978-1-118-05745-2. https://doi.org/10.1002/9781118286067

R.H. Stokes, R.A. Robinson. Journal of the American Chemical Society 70 (1948) 1870-1878. https://doi.org/10.1021/ja01185a065

Z. Wang, L.S. Burrell, W.J. Lambert. Solubility of E2050 at various pH: a case in which apparent solubility is affected by the amount of excess solid. Journal of Pharmaceutical Sciences 91 (2002) 1445-1455. https://doi.org/10.1002/jps.10107

A. Avdeef. Anomalous salting-out, self-association and pKa effects in the practically-insoluble bromothymol blue. ADMET & DMPK 11 (2023) 419-432. https://doi.org/10.5599/admet.1822

A. Apelblat, E. Manzurola, N.A. Balal. The solubilities of benzene polycarboxylic acids in water. The Journal of Chemical Thermodynamics 38 (2006) 565-571. https://doi.org/10.1016/j.jct.2005.07.007

M.N. Alizadeh, A. Shayanfar, A. Jouyban. Solubilization of drugs using sodium lauryl sulfate: experimental data and modeling. Journal of Molecular Liquids 268 (2018) 410-414. https://doi.org/10.1016/j.molliq.2018.07.065

D. Manhas, S. Dhiman, H. Kour, D. Kour, K. Sharma, P. Wazir, B. Vij, A. Kumar, S.D. Sawant, Z. Ahmed, U. Nandi. ADME/PK insights of crocetin: a molecule having an unusual chemical structure with drug¬like features. ACS Omega 9(19) (2024) 21494-21509. https://doi.org/10.1021/acsomega.4c02116

F. Shakeel, N. Haq, S. Alshehri, M. Alenazi, A. Alwhaibi, I.A. Alsarra. Solubility and thermodynamic analysis of isotretinoin in different (DMSO +water) mixtures. Molecules 28 (2023) 7110. https://doi.org/10.3390/molecules28207110

M.M. Haskins, O.N. Kavanagh, R. Sanii, S. Khorasani, J.M. Chen, Z.Y. Zhang, X.L. Dai, B.Y. Ren, T.B. Lu, M.J. Zaworotko. Tuning the pharmacokinetic performance of quercetin by cocrystallization. Crystal Growth & Design 23 (2023) 6059-6066. https://doi.org/10.1021/acs.cgd.3c00590

V. Parvathaneni, R.S. Elbatanony, M. Goyal, T. Chavan, N. Vega, S. Kolluru, A. Muth, V. Gupta, N.K. Kunda. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. International Journal of Molecular Sciences 22 (2021) 4783. https://doi.org/10.3390/ijms22094783

V.B. Ghawate, A.R. Pawar, G.P. Sangale, A.R. Yadav. Enhancement of solubility and dissolution rate of lumefantrine by pharmaceutical cocrystals. Asian Journal of Pharmaceutics, 17 (2023) 215-220. https://doi.org/10.22377/ajp.v17i2.4848

D. Sorgi, A. Sartori, S. Germani, R.N. Gentile, A. Bianchera, R. Bettini. Imiquimod solubility in different solvents: an interpretative approach. Pharmaceutics 16 (2024) 282. https://doi.org/10.3390/pharmaceutics16020282

B.M.H. Al-Hadiya, A.H.H. Bakheit, A.A. Abd-Elgalil. Chapter Six - Imatinib Mesylate. Profiles of Drug Substances, Excipients and Related Methodology 39 (2014) 265-297. https://doi.org/10.1016/B978-0-12-800173-8.00006-4

Takeda Canada Inc. ALUNBRIG™ (brigatinib) Product Monograph. 28 Nov 2019. https://www.takeda.com/siteassets/en-ca/home/what-we-do/our-medicines/product-monographs/alunbrig/alunbrig-pm-en.pdf

S.Z. Asghar, R. Kaviani, A. Shayanfar. Solubility of some drugs in aqueous solutions of choline chloride-based deep eutectic solvent systems: experimental data, modeling, and the impact of solution pH. Iranian Journal of Pharmaceutical Research 22(1) (2023) e137011. https://doi.org/10.5812/ijpr-137011

K.H. Dooley, F.J. Castellino. Solubility of amino acids in aqueous guanidinium thiocyanate solutions. Biochemistry 11 (1972) 1870-1874. https://doi.org/10.1021/bi00760a022

G. Kortüm, W. Vogel, K. Andrussow. Dissociation Constants of Organic Acids in Aqueous Solution. Butterworths: London, 1961. https://doi.org/10.1351/pac196001020187

L.G. Sillén, A.E. Martell. Stability Constants of Metal-Ion Complexes, Special Public. No. 17, Chemical Society: London, 1964

L.G. Sillén, A.E. Martell. Stability Constants of Metal-Ion Complexes, Special Public. No. 25, Chemical Society: London, 1971. ISBN 9780851860190

D.D. Perrin. Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths: London, 1965. ISBN 9780408704083

E.P. Serjeant, B. Dempsey. Ionization Constants of Organic Acids in Aqueous Solution, Pergamon: Oxford, 1979,. ISBN 9780080223391

R.J. Prankerd. Critical Compilation of pKa Values for Pharmaceutical Substances. Profiles of Drug Substances, Excipients and Related Methodology 33 (2007) 1-33. https://doi.org/10.1016/S0099-5428(07)33001-3

M.J. O’Neil, P.E. Heckelman, P.H. Dobbelaar, K.J. Roman, eds. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th Ed. 2013 The Royal Society of Chemistry: London. ISBN: 978-1-84973-670-1. https://books.rsc.org/books/edited-volume/2046/The-Merck-IndexAn-Encyclopedia-of-Chemicals-Drugshttps://books.rsc.org/books/edited-volume/2046/The-Merck-IndexAn-Encyclopedia-of-Chemicals-Drugs

A. Avdeef, K.N. Raymond. Free metal and free ligand concentrations determined from titrations using only a pH electrode. Partial derivatives in equilibrium studies. Inorganic Chemistry 18 (1979) 1605-1611. https://doi.org/10.1021/ic50196a045

A. Avdeef. pH-metric log P. 2. Refinement of partition coefficients and ionization constants of multiprotic substances. Journal of Pharmaceutical Sciences 82 (1992) 183-190. https://doi.org/10.1002/jps.2600820214

A. Avdeef. pH-metric solubility. 1. Solubility-pH profiles from Bjerrum plots. Gibbs buffer and pKa in the solid state. Pharmacy and Pharmacology Communications 4 (1998) 165-178. https://doi.org/10.1111/j.2042-7158.1998.tb00328.x

A. Avdeef. Solubility of sparingly-soluble drugs. Advanced Drug Delivery Reviews 59 (2007) 568-590. https://doi.org/10.1016/j.addr.2007.05.008

C.A.S. Bergström, A. Avdeef. Perspectives in solubility measurement and interpretation. ADMET & DMPK 7 (2019) 88-105. https://doi.org/10.5599/admet.686

G. Völgyi, A. Marosi, K.A. Takács-Novák, A. Avdeef. Salt solubility products of diprenorphine hydrochloride, codeine and lidocaine hydrochlorides and phosphates - novel method of data analysis not dependent on explicit solubility equations. ADMET & DMPK 1 (2013) 48-62. https://doi.org/10.5599/admet.1.4.24

E. Fuguet, X. Subirats, C. Ràfols, E.A. Bosch, A. Avdeef. Ionizable drug self-associations and the solubility dependence on pH: detection of aggregates in saturated solutions using mass spectrometry (ESI-Q-TOF-MS/MS). Molecular Pharmaceutics 18 (2021) 2311-2321. https://doi.org/10.1021/acs.molpharmaceut.1c00131

A. Avdeef. Anomalous solubility behavior of several acidic drugs. ADMET & DMPK 2 (2014) 33-42. https://doi.org/10.5599/admet.2.1.30

A. Avdeef. Phosphate precipitates and water-soluble aggregates in re-examined solubility-pH data of twenty-five basic drugs. ADMET & DMPK 2 (2014) 43-55. https://doi.org/10.5599/admet.2.1.31

G. Butcher, J.A. Comer, A. Avdeef. pKa-critical interpretations of solubility-pH profiles: PG-300995 and NSC-639829 case studies. ADMET & DMPK 3 (2015) 131-140. https://doi.org/10.5599/admet.3.2.182

C. Miranda, A. Ruiz-Picazo, P. Pomares, I. Gonzalez-Alvarez, M. Bermejo, M. Gonzalez-Alvarez, A. Avdeef, M.Á. Cabrera-Pérez. Integration of in silico, in vitro and in situ tools for the preformulation and characterization of a novel cardio-neuroprotective compound during the early stages of drug development. Pharmaceutics 14 (2022) 182. https://doi.org/10.3390/pharmaceutics14010182

A. Avdeef. Cocrystal solubility product analysis - dual concentration-pH mass action model not dependent on explicit solubility equations. European Journal of Pharmaceutical Sciences 110 (2017) 2-18. https://doi.org/10.1016/j.ejps.2017.03.049

A. Avdeef. Cocrystal solubility-pH and drug solubilization capacity of sodium dodecyl sulfate - mass action model for data analysis and simulation to improve design of experiments. ADMET & DMPK 6 (2018) 105-139. https://doi.org/10.5599/admet.505

A. Avdeef. Cocrystal solubility product prediction using an in combo model and simulations to improve design of experiments. Pharmaceutical Research 35 (2018) 40. https://doi.org/10.1007/s11095-018-2343-3

O.S. Marković, M.P. Pešić, A.V. Shah, A.T.M. Serajuddin, T. Ž. Verbić, A. Avdeef. Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: enhanced solubility due to drug-buffer aggregates. European Journal of Pharmaceutical Sciences 133 (2019) 264-274. https://doi.org/10.1016/j.ejps.2019.03.014

O.S. Marković, N.G. Patel, A.T.M. Serajuddin, A. Avdeef, T.Ž. Verbić. Nortriptyline hydrochloride solubility-pH profiles in a saline phosphate buffer: drug-phosphate complexes and multiple pHmax domains with a Gibbs phase rule ‘soft’ constraints. Molecular Pharmaceutics 19 (2022) 710-719. https://doi.org/10.1021/acs.molpharmaceut.1c00919

A. Avdeef. Disproportionation of pharmaceutical salts: pHmax and phase-solubility/pH variance. Molecular Pharmaceutics 18 (2021) 2724-2743. https://doi.org/10.1021/acs.molpharmaceut.1c00258

A. Avdeef, K. Sugano. Salt solubility and disproportionation - uses and limitations of equations for pHmax and the in-silico prediction of pHmax. Journal of Pharmaceutical Sciences 111 (2022) 225-246. https://doi.org/10.1016/j.xphs.2021.11.017

R.A. Robinson, R.H. Stokes. Electrolytic Solutions. 2nd Rev. Ed. Dover Publications, Inc., Mineola, NY. 2002, pp. 18-19. https://easypdfs.cloud/downloads/4879156-electrolyte-solutions-robinson-stokes

R.G. Bates, B.R. Staples, R.A. Robinson. Ionic hydration and single ion activities in unassociated chlorides at high ionic strengths. Analytical Chemistry 42 (1970) 867-871. https://doi.org/10.1021/ac60290a006

R.A. Robinson, R.G. Bates. Ionic activity coefficients in aqueous mixtures of NaCl and MgCl2. Marine Chemistry 6 (1978) 327-333. https://doi.org/10.1016/0304-4203(78)90013-0

J.P. Amend, H.C. Helgeson. Solubilities of the common L-α-amino acids as a function of temperature and solution pH. Pure and Applied Chemistry 69 (1997) 935-942. https://doi.org/10.1351/pac199769050935

T. Zhang, A. Dravid, J. Reddy, L. Aliyu, J. Park, Z. Wang, K.-W. Huang, J. Wu, S. Liu, A. Stone, M. Betenbaugh, M. Donohue. Modeling solubilities for amino acids in water as functions of temperature and pH. Industrial & Engineering Chemistry Research 63 (2024) 22076-22086. https://doi.org/10.1021/acs.iecr.3c00365

J.O’.M. Bockris, A.K.N. Reddy. Modern Electrochemistry, Vol. 1. Plenum Publishing Corp., New York, NY, 1973. https://doi.org/10.1007/b114546

J. Kielland. Individual activity coefficients of ions in aqueous solutions. Journal of the American Chemical Society 59 (1937) 1675-1678. https://doi.org/10.1021/ja01288a032.

N. Ni, S.H. Yalkowsky. Prediction of Setschenow constants. International Journal of Pharmaceutics 254 (2003) 167-172. https://doi.org/10.1016/S0378-5173(03)00008-5

J.A. Platts, D. Butina, M.H. Abraham, A. Hersey. Estimation of molecular linear free energy relation descriptors using a group contribution approach. Journal of Chemical Information and Computer Sciences 39 (1999) 835-845. https://doi.org/10.1021/ci980339t

F.H. Sweeton, R.E. Mesmer, C.F. Baes, Jr. Acidity measurements at elevated temperatures. VII. Dissociation of water. Journal of Solution Chemistry 3 (1974) 191-214. https://doi.org/10.1007/BF00645633.

Published

26-02-2025

Issue

Section

Commentaries

How to Cite

Often neglected steps in transforming drug solubility from single measurement in pure water to physiologically-appropriate solubility-pH: Commentary. (2025). ADMET and DMPK, 13(1), 2626. https://doi.org/10.5599/admet.2626

Similar Articles

1-10 of 262

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>