Electrochemical oxidation and electroanalysis of paracetamol on a boron-doped diamond anode material in aqueous electrolytes

  • Kouakou Etienne Kouadio Laboratoire de constitution et réaction de la matière, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire https://orcid.org/0000-0002-9464-1495
  • Ollo Kambiré UFR Sciences et Technologies, Université de Man, BP 20 Man, Côte d’Ivoire https://orcid.org/0000-0002-6624-6332
  • Konan Sylvestre Koffi Laboratoire de constitution et réaction de la matière, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire https://orcid.org/0000-0003-0766-7185
  • Lassine Ouattara Laboratoire de constitution et réaction de la matière, UFR SSMT, Université Félix Houphouët-Boigny de Cocody, Abidjan, 22 BP 582 Abidjan 22, Côte d’Ivoire
Keywords: Boron-doped diamond, paracetamol, electrolysis, voltammetry, oxidation, degradation


Electrochemical oxidation of paracetamol on boron-doped diamond (BDD) anode has been studied by cyclic voltammetry and preparative electrolysis. Quantification of paracetamol during electrolysis has been mainly realized by differential pulse voltammetry technique in the Britton-Robinson buffer solutions used as the supporting electrolyte. Various parameters such as current intensity, nature of the supporting electrolyte, temperature, and initial concentration of paracetamol have been investigated. The electrochemical characterization by the outer sphere Fe(III)/Fe(II) redox couple has also been performed, showing the metallic character of BDD electrode. The obtained linear dependency of the oxidation peak current intensity and paracetamol concentration indicates that BDD electrode can be used as an electrochemical sensor for the detection and quantification of paracetamol. The investi­gation of paracetamol degradation during preparative electrolysis showed that: (i) the degradation rate of paracetamol increases with increase of current intensity applied; (ii) for the initial concentrations of 10, 6 and 1 mM of paracetamol, its oxidation rate reaches 60, 78 and 99 % respectively, after 1 h of electrolysis in 0.3 M H2SO4 (pH 0.6) at applied current density of 70 mA cm-2; (iii) at temperatures of electrolyte solution of 28, 55 and 75 °C, paracetamol oxidation rate reached 85, 92 and 97 % respectively, after 2 h at applied current density of 70 mA cm2. From the investigation of the effect of pH value of electrolyte solution, it appears that oxidation of paracetamol is more favorable in acidic solution at pH 3 than solutions of higher pH values.


Download data is not yet available.


M. K. Konan, L. Ouattara, REVIST-Revue Ivorienne des Sciences et Technologie 34 (2019) 44-66 https://revist.net/REVIST_34/REVIST_34_4.pdf.

T. R. Ferreira, L. C. Lopes, Jornal de Pediatria (Rio J.) 92(1) (2016) 81-87 http://dx.doi.org/10.1016/-j.jped.2015.04.007.

L. A. Skoglund, E. C. Vigen, P. Coulthard, British Dental Journal 228(7) (2020) 487-487 http://dx.doi.¬org/10.1038/s41415-020-1485-y

M. Farré, P. N. Roset, S. Abanades, E. Menoyo, Y. Alvarez, M. Rovira, A. M. Baena, Methods and Findings in Experimental and Clinical Pharmacology 30(1) (2008) 37-41 http://dx.doi.org/10.1358/-mf.2008.30.1.1159648.

A. Macías-García, J. García-Sanz-Calcedo, J. P. Carrasco-Amador, R. Segura-Cruz, Sustainability 11 (2019) 2672 https:/doi.org/10.3390/su11092672.

A .G. Al-Kaf, K. M. Naji, Q. Y. M. Abdullah, W. H. A. Edrees, Chronicles of Pharmaceutical Science 1(6) (2017) 341-355.

L. F. Angeles, R. A. Mullen, I. J. Huang, C. Wilson, W. Khunjar, H. I. Sirotkin, A. E. McElroy, D. S. Aga, Environmental Science: Water Research & Technology 6 (2020) 62-77 https://doi.org/10.1039/-C9EW00559E.

S. P. Sadia, M. Berté, E. M. H. Loba, F. T. A. Appia, C. Q. -M. Gnamba, I. Sanogo, L. Ouattara, Journal of Water Resource and Protection 8 (2016) 1251-1265 http://dx.doi.org/10.4236/jwarp.2016.¬813096.

H. T. Van, L. H. Nguyen, T. K. Hoang, T. T. Nguyen, T. N. H. Tran, T. B. H. Nguyen, X. H. Vu, M. T. Pham, T. P. Tran, T. T. Pham, H. D. Nguyen, H. -P. Chao, C. -C. Lin, X. C. Nguyen, Environmental Technology & Innovation 18 (2020) 100670 https://doi.org/10.1016/j.eti.2020.100670.

F. T. A. Appia, C. Q. -M. Gnamba, O. Kambiré, M. Berté, S. P. Sadia, I. Sanogo, L. Ouattara, Journal of Electrochemical Science and Technology 7 (1) (2016) 82-89 http://dx.doi.org/¬10.5229/JECST-.2016.7.1.82.

L. A. G. Pohan, O. Kambiré, M. Nasir, L. Ouattara, Modern Research in Catalysis 9 (2020) 47-61 https://doi.org/10.4236/mrc.2020.94004.

O. Kambiré, L. A. G. Pohan, S. P. Sadia, K. E. Kouadio, L. Ouattara, Mediterranean Journal of Chemistry 10(8) (2020) 799-808 http://dx.doi.org/10.13171/mjc10802010271525ko.

Y. U. Kouakou, K. F. Essy, A. Dembélé, Y. S. Brou, S. A. Ello, B. I. M. Gouli, A. Trokourey, Bulletin of the Chemical Society of Ethiopia 31(3) (2017) 397-409 http://dx.doi.org/10.4314/bcse.v31i3.4.

U. P. Gnonsoro, K. M. Yao, B. L. Yao, A. M. Kouassi, A. Dembélé, Y. U. Kouakou, K. P. H. Ouattara, D. Diabaté, A. Trokourey, International Journal of Biological and Chemical Sciences 9(5) (2015) 2701-2711 (in France) http://dx.doi.org/10.4314/ijbcs.v9i5.39.

U. Kouakou, A. S. Ello, J. A. Yapo, A. Trokourey, Journal of Environmental Chemistry and Ecotoxicology 5(6) (2013) 168-171 https://doi.org/10.5897/JECE2013.0264.

M. Farhadian, D. Duchez, C. Vachelard, C. Larroche, Water Research 42(6-7) (2008) 1325-1341 https://doi.org/10.1016/j.watres.2007.10.021.

Y. L. Hsiao, K. Nobe, Journal of Applied Electrochemistry 23 (9) (1993) 943-946 https://doi.org/-10.1007/BF00251031.

C. Comninellis, Electrochimica Acta 39 (1994) 1857-1862 https://doi.org/10.1016/0013-4686(94)-85175-1.

M. H. Zhou, Q. Z. Dai, L. C. Lei, C. A. Ma, D. H. Wang, Environmental Science and Technology 39 (2005) 363-370 https://doi.org/10.1021/es049313a.

O. Kambire, F. T. A. Appia, L. Ouattara, REVIST-Revue Ivorienne des Sciences et Technologie 25 (2015) 21-33.

G. C. Quand-Meme, A. F. T. Auguste, L. E. M. Hélène, B. Mohamed, S. S. Placide, I. Sanogo, L. Ouattara, Journal of Advanced Electrochemistry 2(2) (2016) 85-88.

M. Berté, F. T. A. Appia, I. Sanogo, L. Ouattara, International Journal of Electrochemical Science 11 (2016) 7736-7749 https://doi.org/10.20964/2016.09.44.

A. L. G. Pohan, L. Ouattara, K. H. Kondro, O. Kambiré, A. Trokourey, European Journal of Scientific Research 94(1) (2013) 96-108.

C. Q.- M. Gnamba, F. T. A. Appia, E. M. H. Loba, I. Sanogo, L. Ouattara, Journal of Electrochemical Science and Engineering 5(2) (2015) 129-143 https://doi.org/10.5599/jese.186.

E. R. Sartori, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Journal of Brazilian Chemical Society 20(2) (2009) 360-366 https://doi.org/10.1590/S0103-50532009000200022.

G. Tigari, J.G. Manjunatha, Monatshefte für Chemie - Chemical Monthly 151 (2020) 1681-1688 https://doi.org/10.1007/s00706-020-02700-8.

P. A. Pushpanjali, J. G. Manjunatha, G. Tigari, S. Fattepur, Analytical & Bioanalytical Electro-chemistry 12(4) (2020) 553-568.

G. Tigari, J. G. Manjunatha, Journal of Science: Advanced Materials and Devices 5(1) (2020) 56-64 https://doi.org/10.1016/j.jsamd.2019.11.001.

J. G. Manjunatha, M. Deraman, N. H. Basri, I. A. Talib, Arabian Journal of Chemistry 11(2) (2018) 149-158 http://dx.doi.org/10.1016/j.arabjc.2014.10.009.

J. E. Reynolds III, M. Josowicz, R .B. Vegh, K. M. Solntsev, Chemical Communications 71 (2013) 7755-7862 (Electronic Supplementary Information).

K. M. Koffi, L. Ouattara, American Journal of Analytical Chemistry 10 (2019) 562-578 https://doi.-org/10.4236/ajac.2019.1011039.

M. L. Fernández, R. Pintelon, A. Hubin, Journal of Electroanalytical Chemistry 720 (2014) 147-155 https://doi.org/10.1016/j.jelechem.2014.03.024.

D. Ersin, H. Silah, Chemosensors 8(2) (2020) 25. https://doi.org/10.3390/chemosensors8020025

F. Bottari, G. Moro, N. Sleegers, A. Florea, T. Cowen, S. Piletsky, A.L.N. van Nuijs, K. De Wael, Electroanalysis 32 (2020) 135-141 https://doi.org/10.1002/elan.201900397.

M. Q. Li, L. Jing, Electrochimica Acta 52 (2007) 3250-3257 https://doi.org/10.1016/j.elect¬acta.-2006.10.001.

R. N. Goyal, S. P. Singh, Electrochimica Acta 51 (2006) 3008-3012 https://doi.org/10.1016/-j.electacta.2005.08.036.

Y. Fan, J. -H. Liu, H. -T. Lu, Q. Zhang, Colloids and Surfaces B: Biointerfaces 85 (2011) 289-292. https://doi.org/10.1016/j.colsurfb.2011.02.041

M. P. N. Bui, C. A. Li, K. N. Han, X. H. Pham, G. H. Seong, Sensors and Actuators B 174 (2012) 318-324 https://doi.org/10.1016/j.snb.2012.08.012.

S. A. Kumar, C. F. Tang, S. M. Chen, Talanta 76 (2008) 997-1005 https://doi.org/10.1016/-j.talanta.2008.04.057.

J. Luo, C. H. Fan, X. H. Wang, R. Liu, X. Y. Liu, Sensors and Actuators B 188 (2013) 909-916 https://doi.org/10.1016/j.snb.2013.07.088.

S. B. Tanuja, K. Swamy, K. V. Pai, Journal of Electroanalytical Chemistry 798 (2017) 17-23 https://doi.org/10.1016/j.jelechem.2017.05.025.

M. X. Zheng, F. Gao, Q. X. Wang, X. L. Cai, S. L. Jiang, L. Z. Huang, F. Gao, Materials Science and Engineering C 33 (2013) 1514-1520 https://doi.org/10.1016/j.msec.2012.12.055.

Y. E. Bouabi, A. Farahi, N. Labjar, S. E. I. Hajjaji, M. Bakasse, M. A. E. I. Mhammedi, Materials Science and Engineering: C 8 (2016) 70-77 https://doi.org/10.1016/j.msec.2015.08.014.

M. M. Charithra, J. G. Manjunatha, Journal of Electrochemical Science and Engineering 10(1) (2020) 29-40 http://dx.doi.org/10.5599/jese.717.

F. Z. Yehia, G. Eshaq, A. M. Rabie, A. H. Mady, A. E. ElMetwally, Egyptian Journal of Petroleum 24 (2015) 13–18 https://doi.org/10.1016/j.ejpe.2015.03.002.

A. M. Muskus, M. Krauss, A. Miltner, U. Hamer, K. M. Nowak, Environmental Pollution 259 (2020) 113767 https://doi.org/10.1016/j.envpol.2019.113767.

E. E. Ebrahiem, M. N. Al-Maghrabi, R. M. Ahmed, Arabian Journal of Chemistry 10(2) (2017) S1674-S1679 https://doi.org/10.1016/j.arabjc.2013.06.012.

M. Panizza, G. Cerisola, Electrochimica Acta 49(19) (2004) 3221-3226 https://doi.org/10.1016/-j.electacta.2004.02.036.

M. D. G. de Luna, M. L. Veciana, C .-C. Shu, M. -C. Lu, Journal of Hazardous Materials 217–218 (2012) 200–207 https://doi.org/10.1016/j.jhazmat.2012.03.018.

I. Delpla, A. -V. Jung, E. Baurès, M. Clement, O. Thomas, Environment International 35(8) (2009) 1225-1233 https://doi.org/10.1016/j.envint.2009.07.001.

A. Hamid, S. U. Bhat, A. Jehangir, Applied Water Science 10 (2020) 24 https://doi.org/10.1007/-s13201-019-1043-4.

S. M. Bassem, Biodiversity International Journal 4(1) (2020) 10-16 https://doi.org/10.15406/-bij.2020.04.00159.

Electrochemical Science