The effects of time-variance on impedance measurements: examples of a corroding electrode and a battery cell

  • Nicolas Murer Bio-Logic SAS, 4 Rue de Vaucanson, 38170 Seyssinet-Pariset
  • Jean-Paul Diard Bio-Logic SAS, 4 Rue de Vaucanson, 38170 Seyssinet-Pariset
  • Bogdan Petrescu Bio-Logic SAS, 4 Rue de Vaucanson, 38170 Seyssinet-Pariset
Keywords: EIS, non-stationarity, corrosion, in operando, battery cells, 4D impedance, NSD


When performing electrochemical impedance spectroscopy (EIS) measurements on a system, we must make sure it fulfills certain conditions. One of them is that it should be stationary that is to say, steady-state and time-invariant. Commonly studied systems are time-variant, for example a corroding electrode or a battery under operation. A corroding electrode sees its polarization resistance decrease with time. A passivating electrode sees its polarization resistance increase with time. These phenomena cause a deformation of the Nyquist impedance at low frequencies. This result was first simulated and validated by experimental measurements on a corroding steel sample undergoing uniform cor­rosion. The effect of performing impedance measurements on a discharging battery was also shown. Several methods are available to check and correct time-variance. The non-stationary distortion (NSD) indicator is used to separate valid and invalid data samples and the so called “4D impedance” method can easily produce instantaneous impedance data.


Download data is not yet available.


M. Urquidi-Macdonald, D. Macdonald, Electrochimica Acta 35 (1990) 1559-1566.

K. Darowicki, Journal of Electroanalytical Chemistry 486 (2000) 101-105.

C. A. Schiller, F. Richter, E. Gülzow, N. Wagner, Physical Chemistry Chemical Physics, 3 (2001) 374-378.

C. Wagner and W. Traud, Zeitschrift für Elektrochemie und angewandte physikalische Physik 44 (1938) 391-402.

M. Stern and A. L. Geary, Journal of the Electrochemical Society 104 (1957) 56-63.

I. Epelboin, M. Keddam, H. Takenouti Journal of Applied Electrochemistry 2 (1972) 71-79.

F. Mansfeld in Advances in corrosion science and technology M. G. Fontana et al. Eds., Plenum Press, New York, U.S.A., 1976, p. 163.

C. Gabrielli, M. Keddam, H. Takenouti in Treatise on materials science and technology; Corrosion: aqueous processes and passive films, J. C. Scully, Ed., Academic Press Inc., London, U.-K., 1983, p. 395

Z. B. Stoynov, B. S. Savova-Stoynov, T. Kossev, Journal of Power Sources 30 (1990) 275-285.

F. Berthier, J.-P. Diard, A. Jussiaume, J.-J. Rameau, Corrosion Science, 30 (1990) 239-247.

M. Keddam, Z. B. Stoynov, H. Takenouti, Journal of Applied Electrochemistry 7 (1977) 539-544.

M. Itagaki, K. Honda, Y. Hoshi and I. Shitanda, Journal of Electroanalytical Chemistry 737 (2015) 78-84.

M. Itagaki, N. Kobari, S. Yotsuda, K. Watanabe, S. Kinoshita, M. Ue, Journal of Power Sources 135 (2004) 255–261.

J.-P. Diard, B. Le Gorrec, C. Montella, Journal of Power Sources, 70 (1998) 78-84.

C. Montella, J.-P. Diard, B. Le Gorrec, Exercices de cinétique électrochimique II. Méthode d’impédance, Hermann Eds., 2005, p. 148, p. 217.

M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, Wiley & Sons Eds., 2008, p. 165.

Wolfram Research, Inc., Mathematica, Version 12.0, Champaign, IL (2019).

J.-P. Diard, P. Landaud, B. Le Gorrec, C. Montella, Journal of Electroanalytical Chemistry 255 (1988) 1-20.

Bio-Logic website, support section (05/09/2019).

V. Horvat-Radošević, K. Kvastek, K. Magdić Košiček, Bulgarian Chemical Communications 49 (2017) 119-127.

D. Zalka, S. Vesztergom, M. Ujvári, G. G. Láng, Journal of Eletrochemical Science and Engineering 8 (2018) 151-162.

7th RSE SEE & 8th Kurt Schwabe symposium Special Issue