Electrochemical impedance spectroscopy measurements on time-variant systems: the case of the Volmer-Heyrovský corrosion reaction. Part I: theoretical description

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2467

Keywords:

EIS, non-stationarity, Faradaic, relaxation, potential decay, adsorption

Abstract

One of the theoretical requirements of electrochemical impedance spectroscopy measure-ments is that the studied system should not vary with time. Unfortunately, this is rarely the case of physical systems. In the literature, quite a few methods exist to check and correct a posteriori the effect of time-variance, allowing the use of conventional equivalent circuit models to fit and interpret the data. We suggest a different approach where, for a given electrochemical mechanism and specific experimental conditions, assuming stationarity during each measurement, a time- and frequency-dependent expression of the Faradaic impe¬dance is derived from the kinetic equations. The case of a potential relaxation at zero current following an anodic steady-state polarization is considered for a system where a Volmer-Heyrovský corrosion mechanism is supposed to take place.

Downloads

Download data is not yet available.

References

J.-P. Diard, B. Le Gorrec, C. Montella, Cinétique électrochimique, Hermann, Paris, France, 1996 (in French). ISBN-13 : 978-2705662950

N. Murer, J.-P. Diard, B. Petrescu, Time-variance in EIS measurements: the simple case

of dilution, Journal of The Electrochemical Society 170 (2023) 126506-126517. https://doi.org/10.1149/1945-7111/ad1632

N. Murer, J.-P. Diard, B. Petrescu, The effects of time-variance on impedance measurements: examples of a corroding electrode and a battery cell, Journal of Electrochemical Science and Engineering 10 (2020) 127-140. https:/

/doi.org/10.5599/jese.725

F. Seland, R. Tunold, D. A. Harrington, Impedance study of methanol oxidation on platinum electrodes, Electrochimica Acta 51 (2006) 3827-3840 https://doi.org/10.1016/j.electacta.2005.10.050

M. Keddam, Z. Stoynov, H. Takenouti, Impedance measurement on Pb/H2SO4 batteries, Journal of Applied Electrochemistry 7 (1977) 539-544 https://doi.org/10.1007/BF00616766

G. A. Ragoisha, A. S. Bondarenko, Chemical problems of the development of new materials and technologies, Potentiodynamic electrochemical impedance spectroscopy, Minsk, Belarus, 2003, 138-150 https://elib.bsu.by/bitstream/123456789/21022/1/pages%20from%20Sbornik-END9.pdf

A. M. Bond, N. W. Duffy, D. M. Elton, B. D. Fleming, Characterization of nonlinear background components in voltammetry by use of large amplitude periodic perturbations and Fourier transform analysis, Analytical Chemistry 81 (2009) 8801-8808 https://doi.org/10.1021/ac901318r

J. Schiewe, J. Házı̀, V. A. Vicente-Beckett, A. M. Bond, A unified approach to trace analysis and evaluation of electrode kinetics with fast Fourier transform electrochemical instrumentation, Journal of Electroanalytical Chemistry 451 (1998) 129-138 https://doi.org/10.1016/S0022-0728(97)00579-2

M. J. Walters, J. E. Garland, C. M. Pettit, D. S. Zimmerman, D.R. Marr, D. Roy, Weak adsorption of anions on gold: measurement of partial charge transfer using Fast Fourier Transform electrochemical impedance spectroscopy, Journal of Electroanalytical Chemistry 499 (2001) 48-60 https://doi.org/10.1016/S0022-0728(00)00468-X

T. Pajkossy, M. Urs Ceblin, G. Mészáros, Dynamic electrochemical impedance spectroscopy for the charge transfer rate measurement of the ferro/ferricyanide redox couple on gold, Journal of Electroanalytical Chemistry 899 (2021) 115655-115663 https://doi.org/10.1016/j.jelechem.2021.115655

K. Darowicki, J. Orlikowski, G. Lentka, Instantaneous impedance spectra of a non-stationary model electrical system, Journal of Electroanalytical Chemistry 486 (2000) 106-110 https://doi.org/10.1016/S0022-0728(00)00111-X

Z. Stoynov, B. Savova, Instrumental error in impedance measurements of non-steady-state systems, Journal of Electroanalytical Chemistry 112 (1980) 157-161 https://doi.org/10.1016/S0022-0728(80)80016-7

Z. B. Stoynov, B. S. Savova-Stoynov, Impedance study of non-stationary systems: four-dimensional analysis, Journal of Electroanalytical Chemistry 183 (1985) 133-144 https://doi.org/10.1016/0368-1874(85)85486-1

Z. Stoynov, B. Savova-Stoynov, Non-stationary impedance analysis of lead/acid batteries, Journal of Power Sources 30 (1990) 275-285 https://doi.org/10.1016/0378-7753(93)80085-4

Z. B. Stoynov, Rotating Fourier transform: new mathematical basis for non-stationary impedance analysis, Electrochimica Acta 37 (1992) 2357-2359 https://doi.org/10.1016/0013-4686(92)85132-5

Z. B. Stoynov, Non-stationary impedance spectroscopy, Electrochimica Acta 38 (1993) 1919-1922 https://doi.org/10.1016/0013-4686(93)80315-Q

E. Van Gheem, R. Pintelon, J. Vereecken, J. Schoukens, A. Hubin, P. Verboven, O. Blajiev, Electrochemical impedance spectroscopy in the presence of nonlinear distortions and non-stationary behaviour Part I: theory and validation, Electrochimica Acta 49 (2004) 4753-4762 https://doi.org/10.1016/j.electacta.2004.05.039

E. Van Gheem, R. Pintelon, A. Hubin, J. Schoukens, P. Verboven, O. Blajiev, J. Vereecken, Electrochemical impedance spectroscopy in the presence of nonlinear distortions and non-stationary behaviour Part II. Application to crystallographic pitting corrosion of aluminium, Electrochimica Acta 51 (2006) 1443-1452 https://doi.org/10.1016/j.electacta.2005.02.096

Systems and EIS quality indicators, https://www.biologic.net/wp-content/uploads/2019/08/systems-and-eis-quality-indicators-wp2-electrochemistry.pdf (26/7/2024)

N. Hallemans, D. Howey, A. Battistel, N. F. Saniee, F. Scarpioni, B. Wouters, F. La Mantia, A. Hubin, W. D. Widanage, J. Lataire, Electrochemical impedance spectroscopy beyond linearity and stationarity, Electrochimica Acta 466 (2023) 142939-142962. https://doi.org/10.1016/j.electacta.2023.142939

K. J. Szekeres, S. Vesztergom, M. Ujvári, G. G. Láng, Methods for the determination of valid impedance spectra in non-stationary electrochemical systems: concepts and

techniques of practical importance, ChemElectroChem 8 (2021) 1233-1250 https://doi.org/10.1002/celc.202100093

R. Pachimatla, M. Thomas, S. Rahman OC, R. Srinivasan, Analysis of instabilities in electrochemical systems using nonlinear electrochemical impedance spectroscopy, Journal of The Electrochemical Society 166 (2019) H304-H312 https://doi.org/10.1149/2.0571908jes

F. Berthier, Spectroscopie d’impédance et vitesse de corrosion : application au cas de la corrosion du zinc en milieu NaCl 3 %, Ph. D. Thesis, INP Grenoble (1989) (in French)

M. Baddi, Vérification d’un modèle réactionnel de passivation du fer en milieu acide, Ph. D. Thesis, Université Pierre et Marie Curie Paris VI (1977) (in French)

D. A. Harrington, B. E. Conway, Kinetic theory of the open-circuit potential decay method for evaluation of adsorbed intermediates: Analysis for the case of the H2 evolution reaction, Journal of Electroanalytical Chemistry 221 (1987) 1-21 https://doi.org/10.1016/0022-0728(87)80242-5

J. Heyrovský, A theory of overpotential, Recueil des travaux chimiques des Pays-Bas 46 (1927) 582-586 https://doi.org/10.1002/recl.19270460805

T. Erdey-Grúz, M. Volmer, Zur Theorie der Wasserstoff Überspannung, Zeitschrift für Physikalische Chemie 150A (1930) 203-213 (in German) https://doi.org/10.1515/zpch-1930-15020

J. Huang, Correlation between electrocatalytic activity and impedance shape: A

Theoretical Analysis, PRX Energy 3 (2024) 023001. http://doi.org/10.1103/PRXEnergy.3.023001

J.-P. Diard, C. Montella, N. Murer. Handbook of electrochemical impedance spectroscopy corrosion reactions library, Self-published, Seyssinet-Pariset, France, 2012, p. 11 https://doi.org/10.13140/RG.2.2.16871.87206

Wolfram Language & System Documentation Center https://reference.wolfram.com/language/ref/NDSolve.html (31/7/2024)

Downloads

Published

20-09-2024 — Updated on 20-09-2024

Issue

Section

General electrochemistry

How to Cite

Electrochemical impedance spectroscopy measurements on time-variant systems: the case of the Volmer-Heyrovský corrosion reaction. Part I: theoretical description : Original scientific paper. (2024). Journal of Electrochemical Science and Engineering, 15(1), 2467. https://doi.org/10.5599/jese.2467

Similar Articles

1-10 of 205

You may also start an advanced similarity search for this article.