Cathode intramolecular electron transfer of the Braga-Goodenough Li-S rechargeable battery

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2707

Keywords:

Li battery; lithium-sulfur; all-solid-state battery; reaction mechanism; Li deposition.

Abstract

Braga-Goodenough all-solid-state Li-S discharges beyond the theoretical capacity of the S8 cathode and deposits Li during discharge, and the paradigm-shifting phenomena have been analysed by the previous mechanism. The mechanism has explained the phenomena coherently, except for an intrinsic question raised for the Li deposition step. This paper reviews and revises the previous mechanism and presents a new mechanism involving intramolecular tunnelling electron transfer within an adsorbate to clarify and resolve the issue. The formation of the adsorbate S8-Li+(sf)(ad) (sf-surface states) is essential and characteristic, being the common step for both mechanisms. Since this adsorbate electron energy level is around the S8- or S8 cathode potential range, the previous mechanism showed that electrons from the Li anode reduced Li+(sf)(ad) in the S8-Li+(sf)(ad) to deposit Li. However, this electron flow followed the established concept of battery discharge and raised the question of why the reduction path was not through S8-, but only through Li+(sf)(ad) in the adsorbate. The present new mechanism answers this question through the tunnelling electron transfer from S8- to Li+(sf)(ad) within the adsorbate, which is entirely congruent with the heterojunction physics analysis, and demonstrates a new overall reaction equation. Maximum Li deposition cycles and discharge capacity are also discussed.

Downloads

Download data is not yet available.

References

[1] K. Waki, Sulfur/Carbon Composite Electrodes for Lithium-Sulfur Batteries, Strategy for Technology Development, Proposal paper for Policy Making and Governmental Action toward Low Carbon Societies, Center for Low Carbon Society Strategy, Japan Science and Technology Agency, February (2018). https://www.jst.go.jp/lcs/en

[2] M. H. Braga, N. S. Grundish, A. J. Murchison, J. B. Goodenough, Alternative strategy for a safe rechargeable battery, Energy & Environmental Science 10 (2017) 331-336. https://dx.doi.org/10.1039/c6ee02888h

[3] D. A. Streingart, V. Viswanathan, Comment on “Alternative strategy for a safe rechargeable battery” by M. H. Braga, N. S. Grundish, A. J. Murchison and J. B. Goodenough, Energy Environ. Sci., 2017, 10, 331-336, Energy & Environmental Science 11 (2018) 221-222. https://dx.doi.org/10.1039/c7ee01318c

[4] M. H. Braga, A. J. Murchison, J. A. Ferreira, P. Singh, J. B. Goodenough, Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells, Energy & Environmental Science 9 (2016) 948-954. https://doi.org/10.1039/C5EE02924D

[5] M. H. Braga, C. M. Subramaniyam, A. J. Murchison, J. B. Goodenough, Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life, Journal of the American Chemical Society 140 (2018) 6343-6352. https://dx.doi.org/10.1021/jacs.8b02322

[6] M. H. Braga, J. E. Oliveira, A. J. Murchison, J. B. Goodenough, Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistance, Applied Physics Reviews 7 (2020) 011406. https://dx.doi.org/10.1063/1.5132841

[7] M. Sakai, A Reaction Model for Li-Deposition at the Positive Electrode of the Braga-Goodenough Li-S Battery, Journal of The Electrochemical Society 167 (2020) 160540. https://dx.doi.org/10.1149/1945-7111/abcf53

[8] M. Sakai, Cathode reaction models for Braga-Goodenough Na-ferrocene and Li-MnO2 rechargeable batteries, Journal of Electrochemical Science and Engineering 13 (2023) 687-711. https://doi.org/10.5599/jese.1704

[9] J. B. Goodenough, M. H. Braga, J. A. Ferreira, J. E. Oliveira and A. J. Murchison, Self-Charging and/or Self-Cycling Electrochemical Cells, United States, Patent Application Publication, US 2018/0287222 A1, Oct.4 (2018)

[10] R. W. Gurney, Theory of Electrical Double Layers in Adsorbed Films, Physical Review Journals Archive 47 (1935) 479. https://dx.doi.org/10.1103/PhysRev.47.479

[11] R. Gomer, L. W. Swanson, Theory of Field Desorption, The Journal of Chemical Physics 38 (1963) 1613-1629. https://doi.org/10.1063/1.1776932

[12] J. Bernard, Adsorption on Metal Surface, Studies in Surface Science and Catalysis, Elsevier Sci. Ltd., Amsterdam, 1993, p. 150. ISBN-10: 0444421637

[13] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 121-126. ISBN 0-444-82806-0

[14] K. J. Vetter, Electrochemical Kinetics, Theoretical and Experimental Aspects, Academic Press Inc. New York, 1967, p. 121-128. ISBN 9781483229362

[15] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 223-225, p. 281-282. ISBN 0-444-82806-0

[16] N. Sato, Electrode Chemistry, Nippon Steel Technology Co. Ltd., Tokyo, 1994, 2, p. 240-258. ISBN 4-930825-06-7 C3043

[17] A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Inc., 2001, p. 115-117, p. 554-557. ISBN 0-471-04372-9

[18] S. R. Morrison, Two-equivalent and one-equivalent surface states, Surface Science 10 (1968) 459-469. https://doi.org/10.1016/0039-6028(68)90112-X

[19] N. Sato, Electrode Chemistry, Nippon Steel Technology Co. Ltd., Tokyo, 1994, 2, p. 108-115. ISBN 4-930825-06-7 C3043

[20] T. Nakayama, K. Shiraishi, S. Miyazaki, Y. Akasaka, K. Torii, P. Ahmet, K. Ohmori, N. Umezawa, H. Watanabe, T. Chikyow, Y. Nara, A. Ohta, H. Iwai, K. Yamada, T. Nakaoka, Physics of Metal/High-k Interfaces, ECS Transactions 3(3) (2006) 129. https://doi.org/10.1149/1.2355705

[21] K.Shiraishi, Y. Akasaka, S. Miyazaki, T. Nakayama, T. Nakaoka, G. Nakamura, K. Torii, H. Furutou, A.Ohta, P. Ahmet, K.Ohmori, H.Watanabe, T. Chikyow, M. L. Green, Y. Nara and K. Yamada, Technical Digest of IEEE International Electron Devices Meeting, Washington D.C., USA, 2005, p. 43-46. ISBN 9780780392687

[22] T. Nakayama, K. Shiraishi, Physics of Metal/Insulator Interfaces: Schottky Barrier and Atom Intermixing, Hyomen Kagaku 28(1) (2007) 28-33.https://dx.doi.org/10.1380/jsssj.28.28 (In Japanese)

[23] K. Shiraishi, T. Nakayama, Universal Theory of Metal/Dielectric Interfaces, Hyomen Kagaku 29(2) (2008) 92-98.. https://dx.doi.org/10.1380/jsssj.29.92 (In Japanese)

[24] T. Nakayama, Y. Kangawa, K. Shiraishi, Atomic Structures and Electronic Properties of Semiconductor Interfaces in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, H. Kamimura, Eds, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2011, p. 157-161. ISBN 978-0-444-53153-7

[25] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 35-37. ISBN 0-444-82806-0

[26] N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 39-41, p. 44-45. ISBN 0-444-82806-0

[27] T. Nakayama, Band offsets: the charge transfer effect, Physica B: Condensed Matter 191 (1993) 16-22. https://dx.doi.org/ 10.1016/0921-4526(93)90175-6

[28] M. Cardona, N. E. Christensen, Acoustic deformation potentials and heterostructure band offsets in semiconductors, Physical Review B 35 (1987) 6182. https://dx.doi.org/10.1103/PhysRevB.35.6182

[29] S. J. Rettig, J. Trotter, Refinement of the structure of orthorhombic sulfur, α-S8, Acta Crystallographica Section C: Structural Chemistry 43 (1987) 2260-2262. https://doi.org/10.1107/S0108270187088152

[30] W. J. Bardeen, Surface States and Rectification at a Metal Semi-Conductor Contact, Physical Review Journals Archive 71(10) (1947) 717. https://dx.doi.org/10.1103/PhysRev.71.717

[31] A. M. Cowley, S. M. Sze, Surface States and Barrier Height of Metal-Semiconductor Systems, Journal of Applied Physics 36(10) (1965) 3212-3220. https://doi.org/10.1063/1.1702952

[32] S. Hara, The Schottky limit and a charge neutrality level found on metal/6H-SiC interfaces, Hyomen Kagaku 21(12) (2000) 791-799. (In Japanese). https://dx.doi.org/10.1380/jsssj.21.791

[33] S. Hara, The Schottky limit and a charge neutrality level found on metal/6H-SiC interfaces, Surface Science 494(3) (2001) L805-L810. https://doi.org/10.1016/S0039-6028(01)01596-5

Downloads

Published

04-06-2025

Issue

Section

Batteries and supercapacitors

How to Cite

Cathode intramolecular electron transfer of the Braga-Goodenough Li-S rechargeable battery: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(4), 2707. https://doi.org/10.5599/jese.2707

Similar Articles

1-10 of 404

You may also start an advanced similarity search for this article.