Cathode reaction models for Braga-Goodenough Na-ferrocene and Li-MnO2 rechargeable batteries

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1704

Keywords:

Alkali metal battery, all-solid-state battery, Li deposition, Na deposition, Ferrocene, Manganese dioxide
Graphical Abstract

Abstract

Braga-Goodenough all-solid-state Na-Fc and Li-MnO2 batteries demonstrate deposition of Na and Li on the cathode during discharge. These reaction mechanisms were investigated in light of the generalized charge neutrality level and the experimental results of Braga et al., and two new types of mechanisms were proposed. The Na-Fc mechanism is represented by a multi-step C[(CE)cC]n mechanism where C is the chemical step, E is the electrochemical step, c is the catalytic (CE) step, and n denotes the number of [(CE)cC] part cycles. The nth cycle corresponds to n moles of Na and Li deposition. For Li-MnO2, two mechanisms were considered. One is the C[(CE)cC]n mechanism which is the same as Na-Fc, and the other is the C[2(CE)cC]n mechanism, which involves two consecutive (CE)c steps. In the C step of (CE)c of both mechanisms, Fc and MnO2 reduce Na+(sf) and Li+(sf) (sf - surface states) to deposit Na and Li, respectively, which are intramolecular charge transfer reactions within the adsorbed molecules. Fc and MnO2 are oxidized to inter­mediates immediately reduced to Fc and MnO2 by their anodes in the subsequent E step. Based on these mechanisms, these batteries' discharge capacity and cathode alkali metal deposition were examined in detail.

Downloads

Download data is not yet available.

References

K. Waki, Sulfur/Carbon Composite Electrodes for Lithium-Sulfur Batteries, Strategy for Technology Development, Proposal paper for Policy Making and Governmental Action toward Low Carbon Societies, Center for Low Carbon Society Strategy, Japan Science and Technology Agency, February (2018). https://www.jst.go.jp/lcs/en

M. H. Braga, N. S. Grundish, A. J. Murchison, J. B. Goodenough, Energy and Environmental Science 10 (2017) 331-336. https://dx.doi.org/10.1039/c6ee02888h

D. A. Streingart, V. Viswanathan, Energy and Environmental Science 11 (2018) 221-222. https://dx.doi.org/10.1039/c7ee01318c

M. H. Braga, A. J. Murchison, J. A. Ferreira, P. Singh, J. B. Goodenough, Energy and Environmental Science 9 (2016) 948-954. https://doi.org/10.1039/C5EE02924D

M. H. Braga, C. M. Subramaniyam, A. J. Murchison, J. B. Goodenough, Journal of the American Chemical Society 140 (2018) 6343. https://dx.doi.org/10.1021/jacs.8b02322

M. H. Braga, J. E. Oliveira, A. J. Murchison, J. B. Goodenough, Applied Physics Reviews 7 (2020) 011406. https://dx.doi.org/10.1063/1.5132841

M. Sakai, Journal of the Electrochemical Society 167 (2020) 160540. https://dx.doi.org/10.1149/1945-7111/abcf53

T. Uehara, N. Igarashi, R. V. Belosludov, A. A. Farajian, H. Mizuseki, Y. Kawazoe, Journal of the Japan Institute of Metals and Materials 70(6) (2006) 478-482. https://dx.doi.org/10.2320/jinstmet.70.478 (in Japanese)

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 35-37. ISBN 0-444-82806-0

R. W. Gurney, Physical Review Journals Archive 47 (1935) 479. https://dx.doi.org/10.1103/PhysRev.47.479

R. Gomer and L. W. Swanson, The Journal of Chemical Physics 38 (1963) 1613-1629. https://dx.doi.org/10.1063/1.1776932

J. Bernard, Adsorption on Metal Surface, Studies in Surface Science and Catalysis, Elsevier Sci. B.V., Amsterdam, The Netherlands, 1993, p. 150. ISBN-10: 0444421637

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 121-126. ISBN 0-444-82806-0

A. J. Bard, L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, Inc., 2001 p.556. ISBN 0-471-04372-9

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p. 39-41. ISBN 0-444-82806-0

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, 2003, p.44-45. ISBN 0-444-82806-0

T. Nakayama, K. Shiraishi, S. Miyazaki, Y. Akasaka, T. Nakaoka, K. Torii, A. Ohta, P. Ahmet, K. Ohmori, N. Umezawa, H. Watanabe, T. Chikyow, Y. Nara, H. Iwai, K. Yamada, ECS Transactions 3(3) (2006) 129. https://doi.org/10.1149/1.2355705

K. Shiraishi, Y. Akasaka, S. Miyazaki, T. Nakayama, T. Nakaoka, G. Nakamura, K. Torii, H. Furutou, A. Ohta, P. Ahmet, K. Ohmori, H. Watanabe, T. Chikyow, M. L. Green, Y. Nara, K. Yamada, Technical Digest of IEEE International Electron Devices Meeting, Washington D.C., USA, 2005, p.43-46. ISBN 9780780392687

T. Nakayama, K. Shiraishi, Hyomen Kagaku 28(1) (2007) 28-33. https://dx.doi.org/10.1380/jsssj.28.28 (in Japanese)

K. Shiraishi, T. Nakayama, Hyomen Kagaku 29(2) (2008) 92-98. https://dx.doi.org/10.1380/jsssj.29.92 (in Japanese)

T. Nakayama, Y. Kangawa, and K. Shiraishi, Atomic Structures and Electronic Properties of Semiconductor Interfaces in Comprehensive Semiconductor Science and Technology, P. Bhattacharya, R. Fornari, H. Kamimura, Eds, Elsevier Sci. B. V., Amsterdam, The Netherlands, 2011, p. 157-161. ISBN 978-0-444-53153-7

T. Nakayama, Physica B 191 (1993) 16-22. https://dx.doi.org/ 10.1016/0921-4526(93)90175-6

M. Cardona, N. E. Christensen, Physical Review B 35 (1987) 6182. https://dx.doi.org/10.1103/PhysRevB.35.6182

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier Sci. B.V., Amsterdam, The Netherlands, (2003) p. 254. ISBN 0-444-82806-0

I. Nakajima, Denki Kagaku 21 (1953) 367-375. https://doi.org/10.5796/denka.21.367 (in Japanese)

J. B. Goodenough, M. H. Braga, J. A. Ferreira, J. E. Oliveira, A. J. Murchison, Self-Charging and/or Self-Cycling Electrochemical Cells, United States, Patent Application Publication, US 2018/0287222 A1, Oct.4 (2018)

J. B. Li, K. Koumoto, H. Yanagida, Journal of the Ceramic Society of Japan 96(1109) (1988) 74. https://doi.org/10.2109/jcersj.96.74

University of Texas Researchers Develop More Powerful and Long-lasting Battery, J. B. Goodenough interview by J. Schroeder, https://www.tun.com/blog/university-of-texas-powerful-and-longlasting-battery/

W. J. Bardeen, Physical Review B 71(10) (1947) 717. https://dx.doi.org/10.1103/PhysRev.71.717

A. M. Cowley, S. M. Sze, Journal of Applied Physics 36(10) (1965) 3212-3232. https://dx.doi.org/10.1063/1.1702952

S. Hara, Hyomen Kagaku 21(12) (2000) 791-799. https://dx.doi.org/10.1380/jsssj.21.791 (in Japanese)

S. Hara, Surface Science 494 (2001) 2805-2810. https://doi.org/10.1016/S0039-6028(01)01596-5

Downloads

Published

24-05-2023 — Updated on 24-05-2023

How to Cite

Sakai, M. (2023). Cathode reaction models for Braga-Goodenough Na-ferrocene and Li-MnO2 rechargeable batteries: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(4), 687–711. https://doi.org/10.5599/jese.1704

Issue

Section

Batteries and supercapcitors