Rapid and sensitive electrochemical determination of flavonoids in Albanian wines using zeolite X and Prrenjasi clay as carbon paste modifiers
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2682Keywords:
Wine analysis, polyphenolic compounds, catechin oxidation, aluminosilicate solid, Albanian clayAbstract
This study investigated the electrochemical determination of flavonoids in Albanian wines using carbon paste electrodes modified with various materials. We employed an ex-situ method to minimize interferences from complex wine matrices, focusing on catechins as flavonoids representatives. The modifiers included Zeolite type X, and clay from the Prrenjasi region in Albania. Differential pulse voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy were utilized to characterize the modified electrodes. Results indicated that the carbon paste electrode modified by Prrenjasi clay (PCME) exhibits the highest sensitivity, with the lowest electron transfer resistance and largest active surface area. Also, PCME was chosen for its linear background, low cost, and excellent sensitivity for total flavonoid determinations in Albanian wines. The method demonstrated a limit of detection of 99.3 nM and a limit of quantification of 331 nM. The catechin equivalent flavonoids in the analysed Albanian wine samples ranged between 513.13 and 2156.07 mg L⁻¹. The diffusion coefficient of catechin was determined to be 1.38×10-⁵ cm² s-1. A comparative analysis was also performed using UV-VIS spectrophotometry, which determined the total flavonoid content in each analysed wine. The study demonstrated the potential of using PCME carbon paste electrodes for reliable flavonoid quantification in Albanian wines.
Downloads
References
[1] A. M. Pisoschi, C. Cimpeanu, G. Predoi, Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination, Open Chemistry 13(1) (2015) 824-856. https://doi.org/doi:10.1515/chem-2015-0099
[2] A. A. Bacha, M. Suhail, F. A. Awwad, E. A. A. Ismail, H. Ahmad, Role of dietary fiber and lifestyle modification in gut health and sleep quality, Frontiers in Nutrition 11 (2024) 1324793. https://doi.org/10.3389/fnut.2024.1324793
[3] M. F. Barroso, N. de-los-Santos-Álvarez, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, C. Delerue-Matos, M. B. P. P. Oliveira, P. Tuñón-Blanco, DNA-based biosensor for the electrocatalytic determination of antioxidant capacity in beverages, Biosensors and Bioelectronics 26(5) (2011) 2396-2401. https://doi.org/10.1016/j.bios.2010.10.019
[4] D. Ersin, S. Hülya, A. Nida, Electrochemical Applications for the Antioxidant Sensing in Food Samples Such as Citrus and Its Derivatives, Soft Drinks, Supplementary Food and Nutrients, in Citrus, K. Muhammad Sarwar, K. Iqrar Ahmad Eds., IntechOpen, Rijeka, 2021. Ch. 14 978-1-83968-724-2. https://doi.org/10.5772/intechopen.96873
[5] D. M. Kopustinskiene, J. Bernatoniene, V. Jakstas, R. Morkuniene, The effects of catechins on the cardiac mitochondria, in Mitochondrial Physiology and Vegetal Molecules, M.R. de Oliveira Ed., Academic Press, 2021, pp. 471-487. https://doi.org/10.1016/B978-0-12-821562-3.00012-5
[6] IOV Statistical Report on World Vitiviniculture, The International Organisation of Vine and Wine, https://www.oiv.int/sites/default/files/2024-04/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023.pdf (accessed April, 2024)
[7] INSTAT, Agricultural statistics 2022 https://www.instat.gov.al/media/11771/statistikat-e-bujq%C3%ABsis%C3%AB-2022.pdf (in Albanian)
[8] B. Nemzer, D. Kalita, A.Y. Yashin, Y.I. Yashin, Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health, Beverages 8(1) (2022) 1. https://doi.org/10.3390/beverages8010001
[9] C. E. Ofoedu, E. O. Ofoedu, J. S. Chacha, C. I. Owuamanam, I. S. Efekalam, C. G. Awuchi, Comparative Evaluation of Physicochemical, Antioxidant, and Sensory Properties of Red Wine as Markers of Its Quality and Authenticity, International Journal of Food Science 2022 (2022) 8368992. https://doi.org/10.1155/2022/8368992
[10] V. Merkytė, E. Longo, G. Windisch, E. Boselli, Phenolic Compounds as Markers of Wine Quality and Authenticity, Foods 9(12) (2020) 1785. https://www.mdpi.com/2304-8158/9/12/1785
[11] C.-N. Chen, C.-M. Liang, J.-R. Lai, Y.-J. Tsai, J.-S. Tsay, J.-K. Lin, Capillary Electrophoretic Determination of Theanine, Caffeine, and Catechins in Fresh Tea Leaves and Oolong Tea and Their Effects on Rat Neurosphere Adhesion and Migration, Journal of Agricultural and Food Chemistry 51 (25) (2003) 7495-7503. https://doi.org/10.1021/jf034634b
[12] D.A. El-Hady, N.A. El-Maali, Determination of catechin isomers in human plasma subsequent to green tea ingestion using chiral capillary electrophoresis with a high-sensitivity cell, Talanta 76 (1) (2008) 138-145. https://doi.org/10.1016/j.talanta.2008.02.026
[13] R.G. Peres, F.G. Tonin, M.F. Tavares, D.B. Rodriguez-Amaya, Determination of catechins in green tea infusions by reduced flow micellar electrokinetic chromatography, Food Chemistry 127 (2) (2011) 651-655. https://doi.org/10.1016/j.foodchem.2010.12.104
[14] K. Dhalwal, V.M. Shinde, Y.S. Biradar, K.R. Mahadik, Simultaneous quantification of bergenin, catechin, and gallic acid from Bergenia ciliata and Bergenia ligulata by using thin-layer chromatography, Journal of Food Composition and Analysis 21 (6) (2008) 496-500. https://doi.org/10.1016/j.jfca.2008.02.008
[15] I.K. Bae, H.M. Ham, M.H. Jeong, D.H. Kim, H.J. Kim, Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process, Food Chemistry 172 (2015) 469-475. https://doi.org/10.1016/j.foodchem.2014.09.050
[16] D. Ozyurt, B. Demirata, R. Apak, Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement, Talanta 71(3) (2007) 1155-1165. https://doi.org/10.1016/j.talanta.2006.06.015
[17] M. Araya-Farias, A. Gaudreau, E. Rozoy, L. Bazinet, Rapid HPLC-MS method for the simultaneous determination of tea catechins and folates, Journal of Agricultural and Food Chemistry 62(19) (2014) 4241-4250. https://doi.org/10.1021/jf4053258
[18] I. de Araújo Rodrigues, S.M.C. Gomes, I.P.G. Fernandes, A.M. Oliveira-Brett, Phenolic Composition and Total Antioxidant Capacity by Electrochemical, Spectrophotometric and HPLC-EC Evaluation in Portuguese Red and White Wines, Electroanalysis 31(5) (2019) 936-945. https://doi.org/10.1002/elan.201800842
[19] E. S. Gil, R. O. Couto, Flavonoid electrochemistry: a review on the electroanalytical applications, Revista Brasileira de Farmacognosia 23(3) (2013) 542-558. https://doi.org/10.1590/S0102-695X2013005000031
[20] P. Janeiro, A. M. Oliveira Brett, Catechin electrochemical oxidation mechanisms, Analytica Chimica Acta 518(1) (2004) 109-115. https://doi.org/10.1016/j.aca.2004.05.038
[21] L. J. Yang, C. Tang, H. Y. Xiong, X.H. Zhang, S. F. Wang, Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode, Bioelectrochemistry 75(2) (2009) 158-162. https://doi.org/10.1016/j.bioelechem.2009.03.009
[22] Y. Yao, L. Zhang, Y. Wen, Z. Wang, H. Zhang, D. Hu, J. Xu, X. Duan, Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode, Ionics 21 (10) (2015) 2927-2936. https://doi.org/10.1007/s11581-015-1494-z
[23] D. El-Hady, N. El-Maali, Selective square wave voltammetric determination of (+)-catechin in commercial tea samples using beta-cyclodextrin modified carbon paste electrode, Microchimica Acta 161(1) (2008) 225-231. https://doi.org/10.1007/s00604-007-0780-5
[24] K. Pliuta, D. Snigur, Carbon-paste electrode modified by β-cyclodextrin as sensor for voltammetric determination of Tartrazine and Carmoisine from one drop, Analytical Science 38(11) (2022) 1377-1384. https://doi.org/10.1007/s44211-022-00170-y
[25] S. K. Moccelini, S. C. Fernandes, T. P. de Camargo, A. Neves, I. C. Vieira, Self-assembled monolayer of nickel(II) complex and thiol on gold electrode for the determination of catechin, Talanta 78(3) (2009) 1063-1068. https://doi.org/10.1016/j.talanta.2009.01.038
[26] A. Jarosz-Wilkołazka, T. Ruzgas, L. Gorton, Use of laccase-modified electrode for amperometric detection of plant flavonoids, Enzyme and Microbial Technology 35 (2004) 238-241. https://doi.org/10.1016/j.enzmictec.2004.04.016
[27] K. S. Abhijith, P. V. Sujith Kumar, M. A. Kumar, M. S. Thakur, Immobilised tyrosinase-based biosensor for the detection of tea polyphenols, Analytical and Bioanalytical Chemistry 389(7) (2007) 2227-2234. https://doi.org/10.1007/s00216-007-1604-5
[28] X. Hou, W. Wu, F. Zhao, W. Xie, Q. Yang, Construction of an electrochemical sensor with graphene aerogel doped with ZrO2 nanoparticles and chitosan for the selective detection of luteolin, Microchimica Acta 188 (2021) 86. https://doi.org/10.1007/s00604-021-04743-y
[29] Z. Zhou, C. Gu, C. Chen, P. Zhao, Y. Xie, J. Fei, An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene /mercapto-β-cyclodextrin /Au nanoparticles composite film, Sensors and Actuators B 288 (2019) 88-95. https://doi.org/10.1016/j.snb.2019.02.105
[30] X. Ndreka, N. Isak, K. Xhaxhiu, J. Kudr, O. Zitka, M. Farruku, B. Baraj, Electrochemical determination of wine polyphenols using carbon electrodes: A review, Electroanalysis 36(8) (2024) e202400084. https://doi.org/10.1002/elan.202400084
[31] C. Mousty, Sensors and biosensors based on clay-modified electrodes—new trends, Applied Clay Science 27(3) (2004) 159-177. https://doi.org/10.1016/j.clay.2004.06.005
[32] A. Korpa, A. Andoni, Parameters Affecting the Synthesis of X and A Zeolites from Coal Fly Ash, European Journal of Environment and Earth Sciences 2 (2021) 53-59. https://doi.org/10.24018/ejgeo.2021.2.1.114
[33] D. Thatikayala, M.T. Noori, B. Min, Zeolite-modified electrodes for electrochemical sensing of heavy metal ions – Progress and future directions, Materials Today Chemistry 29 (2023) 101412. https://doi.org/10.1016/j.mtchem.2023.101412
[34] J. Wang, A. Walcarius, Zeolite-modified carbon paste electrode for selective monitoring of dopamine, Journal of Electroanalytical Chemistry 407(1-2) (1996) 183-187. https://doi.org/10.1016/0022-0728(95)04488-4
[35] A. Paredes-Doig, H. Cárcamo, M. Hurtado Cotillo, R. Sun-Kou, E. Doig-Camino, G. Picasso, G. Comina, A. La Rosa-Toro Gómez, Gas Sensors Modified with Zeolite Y for Assessing Wine Aroma Compounds, Journal of Chemistry 2019(1) (2019) 5283208. https://doi.org/10.1155/2019/5283208
[36] N. Isak, K. Xhaxhiu, A review on the adsorption of diuron, carbaryl, and alachlor using natural and activated clays, Remediation Journal 33(4) (2023) 339-353. https://doi.org/10.1002/rem.21757
[37] K. Xhaxhiu, E. Prifti, O. Zitka, A case study of methomyl removal from aqueous solutions by four natural Albanian clays, Remediation Journal 30 (2020) 89-100. https://doi.org/10.1002/rem.21648
[38] N. Isak, K. Xhaxhiu, E. Behrami, A. Andoni, A comparative study of the adsorption and desorption process of selected natural Albanian clays toward methomyl and dimethoate pesticides, Journal of Environmental Management 346 (2023) 118989. https://doi.org/10.1016/j.jenvman.2023.118989
[39] D. V. T. Ebunang, K. Y. Tajeu, C. N. Pecheu, S. L. Z. Jiokeng, A. K. Tamo, I. Doench, A. Osorio-Madrazo, I. K. Tonle, E. Ngameni, Amino-functionalized laponite clay material as a sensor modifier for the electrochemical detection of quercetin, Sensors 22(16) (2022) 6173. https://doi.org/10.3390/s22166173
[40] B. L. Koop, L. S. Soares, K. Cesca, V. G. Souza, G. A. Valencia, A. R. Monteiro, Enhancing the stability of anthocyanins extracts through adsorption into nanoclays–development of a smart biohybrid sensor for intelligent food packaging or as natural food additive/preservative, Food and Bioproducts Processing 147 (2024) 315-326. https://doi.org/10.1016/j.fbp.2024.07.001
[41] J. Huang, Y. Liu, X. Wang, Selective adsorption of tannin from flavonoids by organically modified attapulgite clay, Journal of Hazardous Materials 160(2-3) (2008) 382-387. https://doi.org/10.1016/j.jhazmat.2008.03.008
[42] K. Xhaxhiu, A. M. Ashrafi, M. Dvořák, A. Mukherjee, R. Guráň, O. Zítka, L. Richtera, Total flavonoid content in plant derived beverages determined by extractive stripping voltammetry, Results in Chemistry 5 (2023) 100967. https://doi.org/10.1016/j.rechem.2023.100967
[43] J. Zhishen, T. Mengcheng, W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chemistry 64(4) (1999) 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
[44] P. E. S. Munekata, C. Alcántara, T. Žugčić, R. Abdelkebir, M. C. Collado, J. V. García-Pérez, A. R. Jambrak, M. Gavahian, F. J. Barba, J. M. Lorenzo, Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary, Food Research International 134 (2020) 109242. https://doi.org/10.1016/j.foodres.2020.109242
[45] A. J. Bard, L.R . Faulkner, H. S. White, Electrochemical Methods: Fundamentals and Applications, Third Edition, John Wiley & Sons, 2022. ISBN-13: 978-1119334064
[46] S. Z. Nourbakhsh-Amiri, G. Najafpour-Darzi, Novel electrochemical sensing platform for accurate detection of benzylpenicillin based on a graphene oxide-manganese ferrite modified carbon paste electrode, Journal of Industrial and Engineering Chemistry 137 (2024) 317-326. https://doi.org/10.1016/j.jiec.2024.03.018
[47] M. Hromadová, J. Kocábová, L. Pospíšil, S. Cichoň, V. Cháb, M. Novák, J. Macáket, Hydrogen Evolution Reaction at Zirconium and Si-Modified Zirconium Electrodes. Electrochemistry at Fractal Interfaces, Bulgarian Chemical Communications 50(D) (2018) 75-81.
[48] R. L. Hurt, J.R . Macdonald, Distributed circuit elements in impedance spectroscopy: A unified treatment of conductive and dielectric systems, Solid State Ionics 20(2) (1986) 111-124. https://doi.org/10.1016/0167-2738(86)90018-4
[49] A. Lame, M. Farruku, E. Kokalari, K. Xhanari, N. Isak, K. Xhaxhiu, A. Shehu, Walnut (Juglans regia L.) fruit septum alcoholic extract as corrosion inhibitor for Fe B500B steel bars in mixed acidic solution: Original scientific paper, Journal of Electrochemical Science and Engineering 14(3) (2024) 297-320. https://doi.org/10.5599/jese.2303
[50] N.A. Nia, M.M. Foroughi, S. Jahani, Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure, Talanta 222 (2021) 121563. https://doi.org/10.1016/j.talanta.2020.121563
[51] M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, B.-F. Mirjalili, Selective and Simultaneous Voltammetric Determination of Glutathione, Uric Acid and Penicillamine by a Modified Carbon Nanotube Paste Electrode, Electroanalysis 25(8) (2013) 2021-2029. https://doi.org/10.1002/elan.201300151
[52] C. Pérez-Ràfols, N. Serrano, J.M. Díaz-Cruz, C. Ariño, M. Esteban, New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates, Analytica Chimica Acta 916 (2016) 17-23. https://doi.org/10.1016/j.aca.2016.03.003
[53] D. Saritha, A. Koirala, M. Venu, G.D. Reddy, A.V.B. Reddy, B. Sitaram, G. Madhavi, K. Aruna, A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode, Electrochimica Acta 313 (2019) 523-531. https://doi.org/10.1016/j.electacta.2019.04.188
[54] G. Manasa, R. J. Mascarenhas, A. K. Satpati, O. J. D'Souza, A. Dhason, Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin, Materials Science and Engineering: C 73 (2017) 552-561. https://doi.org/10.1016/j.msec.2016.12.114
[55] A. Królicka, A. Szczurkowska, P. Mochalski, G. Malata, Preparation, Characterization, and Activation of Natural Glassy Carbon Paste Electrodes as New Sensors for Determining the Total Antioxidant Capacity of Plant Extracts, Membranes 12(12) (2022) 1193. https://doi.org/10.3390/membranes12121193
[56] S. Masoum, M. Behpour, F. Azimi, M.H. Motaghedifard, Potentiality of chemometric approaches for the determination of (+)-catechin in green tea leaves at the surface of multiwalled carbon nanotube paste electrode, Sensors and Actuators B 193 (2014) 582-591. https://doi.org/10.1016/j.snb.2013.12.022
[57] K. Fan, X. Luo, J. Ping, W. Tang, J. Wu, Y. Ying, Q. Zhou, Sensitive Determination of (−)-Epigallocatechin Gallate in Tea Infusion Using a Novel Ionic Liquid Carbon Paste Electrode, Journal of Agricultural and Food Chemistry 60(25) (2012) 6333-6340. https://doi.org/10.1021/jf300498e
[58] D. Braga, B. Agustini, E. Silva, F. Gaensly, R. Cordeiro, M. Fávero, D. Brand, M. Maraschin, T. Bonfim, Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes, Food Science and Technology (Campinas) 31 (2011) 783-800. https://doi.org/10.1590/S0101-20612011000300038
[59] J. Woraratphoka, K.-O. Intarapichet, K. Indrapichate, Phenolic compounds and antioxidative properties of selected wines from the northeast of Thailand, Food Chemistry 104(4) (2007) 1485-1490. https://doi.org/10.1016/j.foodchem.2007.02.020
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Nensi Isak, Muhamed Farruku, Xhensiana Ndreka, Sara Dervishi, Magdalena Cara, Edlira Baraj, Avni Berisha, Arjan Korpa, Prof. Kledi Xhaxhiu

This work is licensed under a Creative Commons Attribution 4.0 International License.