Influence of irradiation treatment on sensing performances of screen-printed electrodes aimed for doxorubicin monitoring
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2656Keywords:
Electrochemical nanosensors, carbon nanotubes, polyaniline, e-beam irradiationAbstract
The subject of study is the development of nanosensors based on carbon nanotubes (CNTs) and polyaniline (PANI) aimed at effective detection and monitoring of doxorubicin - a chemotherapy drug used in the treatment of different types of cancer. The main goal is the design of nanosensors that provide precise and reliable detection and monitoring of doxorubicin, providing an effective approach to monitor drug levels during treatment. The research was carried out on the screen-printed electrodes (SPE) with a working electrode of commercial CNTs and PANI and their modification by irradiation with electron irradiation (50 kGy). The structural changes resulting from the e-beam irradiation were observed by scanning electron microscopy, Raman and FTIR spectroscopy, and thermogravimetric analysis. An electrochemical study employing cyclic voltammetry was done to characterize and test the performance of the nanosensors. Modification with electron irradiation was shown as an effective approach to improve the sensing characteristics of the studied SPE, resulting in a lower limit of detection for the modification. The irradiated SPEs exhibit a limit of detection of 12.674 µmol L⁻¹ for the modified multi-walled CNT (MWCNT) electrode and 12.712 µmol L⁻¹ for the modified PANI electrode, compared to 12.773 µmol L⁻¹ for the MWCNT and 12.712 µmol L⁻¹ for the PANI commercial electrodes.
Downloads
References
K. I. Popov, S. S. Djokić, N. D. Nikolić, V. D. Jović, Morphology of Electrochemically and Chemically Deposited Metals; Springer, New York, USA, 2016, pp. 1-368. https://doi.org/10.1007/978-3-319-26073-0.
Making Metal Powder, https://www.mpif.org/IntrotoPM/MakingMetalPowder.aspx. (accessed on 04 February 2025)
M. Amiri, S. Nouhi, Y. Azizian-Kalandaragh, Facile synthesis of silver nanostructures by using various deposition potential and time: A nonenzymatic sensors for hydrogen peroxide, Mate-ri¬als Chemistry and Physics 155 (2015) 129-135. https://doi.org/10.1016/j.matchemphys.2015.02.009
G. Orhan, G. Hapci, Effect of Electrolysis Parameters on the Morphologies of Copper Powder Obtained in a Rotating Cylinder Electrode Cell, Powder Technology 201 (2010) 57-63. https://doi.org/10.1016/j.powtec.2010.03.003
N. D. Nikolić, Influence of the exchange current density and overpotential for hydrogen evolution reaction on the shape of electrolytically produced disperse forms, Journal of Electrochemical Science and Engineering 10 (2020) 111-126. https://doi.org/10.5599/jese.707
N. D. Nikolić, V. M. Maksimović, Lj. Avramović, Correlation of Morphology and Crystal Structure of Metal Powders Produced by Electrolysis Processes, Metals 11 (2021) 859. https://doi.org/10.3390/met11060859
F. C. Walsh, C. T. J. Low, A review of developments in the electrodeposition of tin, Surface and Coatings Technology 288 (2016) 79-94. https://doi.org/10.1016/j.surfcoat.2015.12.081
A. W. Lodge, M. M. Hasan, P. N. Bartlett, R. Beanland, A. L. Hector, R. J. Kashtiban, W. Levason, G. Reid, J. Sloan, D. C. Smith, W. Zhang, Electrodeposition of tin nanowires from a dichloromethane based electrolyte, RSC Advances 8 (2018) 24013-24020. https://doi.org/10.1039/C8RA03183E
Z. Wang, J. Ru, Y. Hua, J.Bu, X. Geng, W. Zhang, Electrodeposition of Sn powders with pyramid chain and dendrite structures in deep eutectic solvent: roles of current density and SnCl2 concentration, Journal of Solid State Electrochemistry 25 (2021) 1111-1120. https://doi.org/10.1007/s10008-020-04894-7
Z. Wang, J. Ru, Y. Hua, D. Wang, J. Bu, Morphology-Controlled Preparation of Sn Powders by Electrodeposition in Deep Eutectic Solvent as Anodes for Lithium Ion Batteries, Journal of The Electrochemical Society 167 (2020) 082504. https://doi.org/10.1149/1945-7111/ab8824
J. Ru, Y. Hua, C. Xu, J. Li, Y. Li, D. Wang, C. Qi, Y. Jie, Morphology-controlled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent, Applied Surface Science 335 (2015) 153-159. http://dx.doi.org/10.1016/j.apsusc.2015.02.045
J. Ru, J. Bu, Z. Wang, Y. Hua, D. Wang, Eco-friendly and facile electrochemical synthesis of sub-micrometer lead powders in deep eutectic solvents using galena as a raw material, Journal of Applied Electrochemistry 49 (2019) 369-377. https://doi.org/10.1007/s10800-018-01284-w
V. S. Cvetković, N. M. Vukićević, N. D. Nikolić, G. Branković, T. S. Barudžija, J. N. Jovićević, Formation of needle-like and honeycomb-like magnesium oxide/hydroxide structures by electrodeposition from magnesium nitrate melts, Electrochimica Acta 268 (2018) 494-502. https://doi.org/10.1016/j.electacta.2018.02.121
V. S. Cvetković, N. M. Vukićević, N. D. Nikolić, Z. Baščarević, T. S. Barudžija, J. N. Jovićević, A possible mechanism of formation of flower-like MgO/Mg(OH)2 structures by galvanostatic molten salt electrolysis: The concept of local diffusion fields, Journal of Electroanalytical Chemistry 842 (2019) 168-175. https://doi.org/10.1016/j.jelechem.2019.04.067
V. M. Lipkin, L. N. Fesenko, S. M. Lipkin, Tin Powders Electrodeposition from Choline Chloride Based Ionic Liquid, Solid State Phenomena 284 (2018) 1252-1256. https://doi.org/10.4028/www.scientific.net/ssp.284.1252
Y. Ni, Y. Zhang, J. Hong, Hierarchical Pb microstructures: a facile electrochemical synthesis, shape evolution and influencing factors, CrystEngComm 13 (2011) 934-940. https://doi.org/10.1039/C0CE00272K
R. Sivasubramanian, M. V. Sangaranarayanan, Electrodeposition of silver nanostructures: from polygons to dendrites, CrystEngComm 15 (2013) 2052-2056. https://doi.org/10.1039/C3CE26886A
Lj. Avramović, E. R. Ivanović, V. M. Maksimović, M. M. Pavlović, M. Vuković, J. S. Stevanović, N. D. Nikolić, Correlation between Crystal Structure and Morphology of Potentiostatically Electrodeposited Silver Dendritic Nanostructures, Transactions of Nonferrous Metals Society of China 28 (2018) 1903-1912. https://doi.org/10.1016/S1003-6326(18)64835-6
M. Yang, W. Xia, J. An, N. Wu, W. Yang, H. Wang, Fractal growth of copper powder on point and plate electrodes based on diffusion-limited aggregation model, Ionics 30 (2024) 4313-4323. https://doi.org/10.1007/s11581-024-05554-w
N. Wu, C. Zhang, S. Han, J. An, W. Xia, Effect of Electrolysis Parameters on the Fractal Structure of Electrodeposited Copper, Journal of Electrochemical Science and Technology 14 (2023) 194-204. https://doi.org/10.33961/jecst.2022.00878
H.-C. Shin, J. Dong, M. Liu, Nanoporous Structures Prepared by an Electrochemical Deposition Process, Advanced Materials 15 (2003) 1610-1614. https://doi.org/10.1002/adma.200305160
T.-H. Kim, K.-S. Hong, D. R. Sohn, M. J. Kim, D.-H. Nam, E. A. Cho, H. S. Kwon, One-step synthesis of multilayered 2D Sn nanodendrites as a high-performance anode material for Na-ion batteries, Journal of Materials Chemistry A 5 (2017) 20304-20315. https://doi.org/10.1039/C7TA06469A
N. D. Nikolić, J. D. Lović, V. M. Maksimović, P .M. Živković, Morphology and structure of electrolytically synthesized tin dendritic nanostructures, Metals 12 (2022) 1201. https://doi.org/10.3390/met12071201
N. D. Nikolić, P. M. Živković, J. D. Lović, G. Branković, Application of the general theory of disperse deposits formation in an investigation of mechanism of zinc electrodeposition from the alkaline electrolytes, Journal of Electroanalytical Chemistry 785 (2017) 65-74. https://doi.org/10.1016/j.jelechem.2016.12.024
S. J. Banik, R. Akolkar, Suppressing Dendritic Growth during Alkaline Zinc Electrodeposition using Polyethylenimine Additive, Electrochimica Acta 179 (2015) 475-481. https://doi.org/10.1016/j.electacta.2014.12.100
J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore, F. Jiao, Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction, ACS Catalysis 5 (2015) 4586−4591. https://doi.org/10.1021/acscatal.5b00922
P. Lertsathitphong, S. Limpijumnong, M. Somasundrum, A. P. O’Mullane, B. Lertanantawong, Electrochemical Formation of Pb Microwires with Tunable Morphology on Liquid Metal Electrodes, ACS Omega 9 (2024) 45641-45650. https://doi.org/10.1021/acsomega.4c09165
V. D. Jović, B. M. Jović, M. G. Pavlović, Electrodeposition of Ni, Co and Ni-Co alloy powders, Electrochimica Acta 51 (2006) 5468-5477. https://doi.org/10.1016/j.electacta.2006.02.022
N. D. Nikolić, Lj. Avramović, E. R. Ivanović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, Comparative morphological and crystallographic analysis of copper powders obtained under different electrolysis conditions, Transactions of Nonferrous Metals Society of China 29 (2019) 1275-1284. https://doi.org/10.1016/s1003-6326(19)65034-x
D. Desai, X. Wei, D. A. Steingart, S. Banerjee, Electrodeposition of preferentially oriented zinc for flow-assisted alkaline batteries, Journal of Power Sources 256 (2014) 145-152. https://doi.org/10.1016/j.jpowsour.2014.01.026
N. D. Nikolić, V. M. Maksimović, G. Branković, P. M. Živković, M. G. Pavlović, Correlation between crystal orientation and morphology of electrolytically produced powder particles: analysis of the limiting cases, Materials Protection 59 (2018) 256-264. https://doi.org/10.5937/ZasMat1802256N
D. Perdana, S. Wahyudi, M. Z. Mubarok, Analysis of the Particle Size and Morphology of Tin Powder Synthesized by the Electrolytic Method, ACS Omega 9 (2024) 3276-3286. https://doi.org/10.1021/acsomega.3c05179
W. Lou,W. Cai, P. Li, J. Su, S. Zheng, Y. Zhang, W. Jin, Additives-assisted electrodeposition of fine spherical copper powder from sulfuric acid solution, Powder Technology 326 (2018) 84-88. https://doi.org/10.1016/j.powtec.2017.12.060
N. D. Nikolić, G. Branković, M. G. Pavlović, Formation of the honeycomb-like electrodes by the regime of pulsating overpotential in the second range, Journal of Electrochemical Science and Engineering 2 (2012) 33-40. https://doi.org/10.5599/jese.2012.0009
N. D. Nikolić, G. Branković, M. G. Pavlović, Correlate Between Morphology of Powder Particles Obtained by the Different Regimes of Electrolysis and the Quantity of Evolved Hydrogen, Powder Technology 221 (2012) 271-277. https://doi.org/10.1016/j.powtec.2012.01.014
R. K. Nekouei, F. Rashchi, N. N. Joda, Effect of organic additives on synthesis of copper nano powders by pulsing electrolysis, Powder Technology 237 (2013) 554-561. https://doi.org/10.1016/j.powtec.2012.12.046
R. Winand, Electrodeposition of metals and alloys - new results and perspectives, Electrochimica Acta 39 (1994) 1091-1105. https://doi.org/10.1016/0013-4686(94)E0023-S
C. S. Barrett, T. B. Massalski, Structure of Metals, Crystallographic Methods, Principles and Data, International Series on Materials Science and Technology, Pergamon, New York, USA, 1980. ISBN: 008026171X, 9780080261713, pp. 1-654.
X. Zheng, T. Ahmad, W. Chen, Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries, Energy Storage Materials 39 (2021) 365-394. https://doi.org/10.1016/j.ensm.2021.04.027
M. N. Kozicki, Information in electrodeposited dendrites, Advances in Physics: X 6 (2021) 1920846. https://doi.org/10.1080/23746149.2021.1920846
G. Wranglen, Dendrites and Growth Layers in the Electrocrystallization of Metals, Electrochimica Acta 2 (1960) 130-146. https://doi.org/10.1016/0013-4686(60)87010-7
M. V. Mandke, S-H. Han, H. M. Pathan, Growth of silver dendritic nanostructures via electrochemical route, CrystEngComm 14 (2012) 86-89. https://doi.org/10.1039/C1CE05791J
J. M. Zhang, F. Ma, K. W. Xu, Calculation of the surface energy of FCC metals with modified embedded-atom method, Applied Surface Science 229 (2004) 34-42. https://doi.org/10.1016/j.apsusc.2003.09.050
S. G. Wang, E. K. Tian, C. W. Lung, Surface Energy of Arbitrary Crystal Plane of bcc and fcc Metals, Journal of Physics and Chemistry of Solids 61 (2000) 1295-1300. https://doi.org/10.1016/S0022-3697(99)00415-1
H. Fu, L. Xiong, W. Han, M. Wang, Y. J. Kim, X. Li, W. Yang, G. Liu, Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries, Energy Storage Materials 51 (2022) 550-558. https://doi.org/10.1016/j.ensm.2022.06.057
X. Wang, J. P. Meng, X. G. Lin, Y. D. Yang, S. Zhou, Y. P. Wang, A. Q. Pan, Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings, Advanced Functional Materials 31 (2021) 2106114. https://doi.org/10.1002/adfm.202106114.
J. O.’M. Bockris, A. K. N. Reddy, M. E. Gamboa-Aldeco, Modern Electrochemistry 2A, Fundamentals of Electrodics, Springer, New York, USA, 2000, p. 1333 https://doi.org/10.1007/b113922
N. D. Nikolić, J. D. Lović, V. M. Maksimović, N. S. Vuković, N. L. Ignjatović, P. M. Živković, S. I. Stevanović, Correlation Between Morphology and Crystal Structure of Electrolytically Produced Zinc Dendritic Particles, Metals 14 (2024) 1468. https://doi.org/10.3390/met14121468
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Perica Paunović, Iva Dimitrievska, Marija Katerina Paunović, Marija Mitevska, Anita Grozdanov

This work is licensed under a Creative Commons Attribution 4.0 International License.