Polymer-modified screen-printed electrode-based electrochemical sensors for doxorubicin detection
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2501Keywords:
Graphene, polyvinylidene fluoride, chitosan, anticancer medication, sensing
Abstract
In the last decade, intensive research has been performed in the field of analytical electrochemistry, seeking designs of electrochemical sensors capable of providing better analytical characteristics in terms of sensitivity, selectivity, reliability, ease of fabrication and use, and low cost, especially for pharmaceutical drug monitoring. Our research has primarily focused on developing screen-printed electrode-based sensors and their application as electrochemical platforms for drug determination and monitoring, specifically emphasizing their suitability for surface modification. A commercial screen-printed graphene electrode was used as the electrochemical sensing component, which was subsequently modified with polymers, such as polyvinylidene fluoride and chitosan. All studied electrodes were tested using a doxorubicin hydrochloride (DOX) solution with a concentration of 0.002 mol L-1 dissolved in 0.1 mol L-1 phosphate-buffered saline at pH 6.7. Cyclic voltammetry was used as an electrochemical characterization technique to gather data on all tested electrodes' electrochemical activity. The morphological characterization of the electrodes was done using scanning electron microscopy. The changes in the electrolyte during the electrochemical measurements were followed through ultraviolet-visible spectroscopy. The modified electrodes demonstrated a favorable electrochemical response to DOX and exhibited higher electrical conductivity than the commercial one. The characterization results indicated that the Ch-modified electrode exhibited excellent electrochemical conductivity and demonstrated strong electrochemical performance. The evaluations of this electrode comprised the definition of the lowest limit of detection and limit of quantification among the tested electrodes, with values of 9.822 and 32.741 µmol L-1, respectively, within a linear concentration range from 1.5 to 7.4 µmol L-1. Additionally, the electrodes showed excellent repeatability, stability, and reproducibility, confirming their suitability for sensitive DOX detection.
Downloads
References
C. Carvalho, R. X. Santos, S. Cardoso, S. Correia, P. J. Oliveira, M. S. Santos, P. I. Moreira, Doxorubicin: the good, the bad and the ugly effect, Current Medicinal Chemistry 16(25) (2009) 3267-3285 https://doi.org/10.2174/092986709788803312.
G. Minotti, S. Recalcati, A. Mordente, G. Liberi, A. M. Calafiore, C. Mancuso, P. Preziosi, G. Cairo, The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. Federation of American Societies for Experimental Biology Journal 12(7) (1998) 541-52 https://doi.org/10.1096/fasebj.12.7.541.
M. A. Mitry, J. G. Edwards, Doxorubicin induced heart failure: Phenotype and molecular mechanisms, International Journal of Cardiology Heart & Vasculature 10(17-24) (2016) 17-24 http://doi.org/10.1016/j.ijcha.2015.11.004.
J. H. Beijnen, P. L. Meenhorst, R. Van Gijn, M. Fromme, H. Rosing, W. J. M. Underberg, HPLC determination of doxorubicin, doxorubicinol and four aglycone metabolites in plasma of AIDS patients, Journal of Pharmaceutical and Biomedical Analysis 9(10-12) (1991) 995-1002 https://doi.org/10.1016/0731-7085(91)80036-9.
K. Alhareth, C. Vauthier, C. Gueutin, G. Ponchel, F. Moussa, HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles, Journal of Chromatography B 887-888 (2012) 128-132 https://doi.org/10.1016/j.jchromb.2012.01.025.
S. Ahmed, N. Kishikawa, K. Ohyama, M. Wada, K. Nakashima, N. Kuroda, Selective determination of doxorubicin and doxorubicinol in rat plasma by HPLC with photosensitization reaction followed by chemiluminescence detection, Talanta, 78(1) (2009) 94-100 https://doi.org/10.1016/j.talanta.2008.10.043.
C. Mazuel, J. Grove, G. Gerin, K. P. Keenan, HPLC-MS/MS determination of a peptide conjugate prodrug of doxorubicin, and its active metabolites, leucine-doxorubicin and doxorubicin, in dog and rat plasma, Journal of Pharmaceutical and Biomedical Analysis, 33(5) (2003) 1093-1102 https://doi.org/10.1016/S0731-7085(03)00434-5.
A. S. Rodrigues and others, Development of an Analytical Methodology for Simultaneous Determination of Vincristine and Doxorubicin in Pharmaceutical Preparations for Oncology by HPLC—UV, Journal of Chromatographic Science, 47(5) 387-391 https://doi.org/10.1093/chromsci/47.5.387.
E. Configliacchi, G. Razzano, V. Rizzo, A. Vigevani, HPLC methods for the determination of bound and free doxorubicin, and of bound and free galactosamine, in methacrylamide polymer-drug conjugates, Journal of Pharmaceutical and Biomedical Analysis, 15(1) (1996) 123-129 https://doi.org/10.1016/0731-7085(96)01825-0.
Q. Zhou, B. Chowbay, Determination of doxorubicin and its metabolites in rat serum and bile by LC: application to preclinical pharmacokinetic studies, Journal of Pharmaceutical and Biomedical Analysis, 30(4) (2002), 1063-1074 https://doi.org/10.1016/S0731-7085(02)00442-9.
W. Ma, J. Wang, Q. Guo, P. Tu, Simultaneous determination of doxorubicin and curcumin in rat plasma by LC-MS/MS and its application to pharmacokinetic study, Journal of Pharmaceutical and Biomedical Analysis 111 (2015) https://doi.org/10.1016/j.jpba.2015.04.007.
Y. Xie, N. Shao, Y. Jin, L. Zhang, H. Jiang, N. Xiong, F. Su, H. Xu, Determination of non-liposomal and liposomal doxorubicin in plasma by LC-MS/MS coupled with an effective solid phase extraction: In comparison with ultrafiltration technique and application to a pharmacokinetic study, Journal of Chromatography B 1072 (2018) 149-160 https://doi.org/10.1016/j.jchromb.2017.11.020.
M. Janicka, A. Kot-Wasik, J.Paradziej-Łukowicz, G. Sularz-Peszyńska, A. Bartoszek, J. Namieśnik, LC-MS/MS Determination of Isoprostanes in Plasma Samples Collected from Mice Exposed to Doxorubicin or Tert-Butyl Hydroperoxide, International Journal of Molecular Sciences 14(3) (2013) 6157-6169 https://doi.org/10.3390/ijms14036157.
C. Bobin-Dubigeon and others, A New, Validated Wipe-Sampling Procedure Coupled to LC-MS Analysis for the Simultaneous Determination of 5-Fluorouracil, Doxorubicin and Cyclophosphamide in Surface Contamination, Journal of Analytical Toxicology 37(7) (2013) 433-439 https://doi.org/10.1093/jat/bkt045.
S. Mazzucchelli, A. Ravelli, F. Gigli, M. Minoli, F. Corsi, P. Ciuffreda, R. Ottria, LC-MS/MS method development for quantification of doxorubicin and its metabolite 13-hydroxy doxorubicin in mice biological matrices: Application to a pharmaco-delivery study, Biomedical Chromatography 31(4) 2017 https://doi.org/10.1002/bmc.3863.
I. Dimitrievska, P. Paunovic, A. Grozdanov, Recent advancements in nano sensors for air and water pollution control, Material Science and Engineering 7(2) (2023) 113‒128 https://doi.org/10.15406/ mseij.2023.07.00214.
M. Hossein Ghanbari, Z. Norouzi, A new nanostructure consisting of nitrogen-doped carbon nanoonions for an electrochemical sensor to the determination of doxorubicin, Microchemical Journal 157(9) (2020) https://doi.org/10.1016/j.microc.2020.105098.
I. M. Apetrei, C. Apetrei, Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products, International Journal of Nanomedicine 11 (2016) 1859-1866 https://doi.org/10.2147/IJN.S104941.
J. Soleymani, M. Hasanzadeh, M. Eskandani, M. Khoubnasabjafari, N. Shadjou, A. Jouyban, Electrochemical sensing of doxorubicin in unprocessed whole blood, cell lysate, and human plasma samples using thin film of poly-arginine modified glassy carbon electrode, Materials Science and Engineering: C 77 (2017) 790-802 https://doi.org/10.1016/j.msec.2017.03.257.
I. A. Mattioli, P. Cervini, É. T. G. Cavalheiro, Screen-printed disposable electrodes using graphite-polyurethane composites modified with magnetite and chitosan-coated magnetite nanoparticles for voltammetric epinephrine sensing: a comparative study, Microchimica Acta 187(6) (2020) https://doi.org/10.1007/s00604-020-04259-x.
N. A. Negm, H. A. Abubshait, S. A. Abubshait, M. T. H. Abou Kana, E. A. Mohamed, M. M. Betiha, Performance of chitosan polymer as platform during sensors fabrication and sensing applications, International Journal of Biological Macromolecules 165 (2020) 402-435 https://doi.org/10.1016/j.ijbiomac.2020.09.13.
R. Dallaev, T. Pisarenko, D. Sobola, F. Orudzhev, S. Ramazanov, T. Trčka, Brief Review of PVDF Properties and Applications Potential, Polymers 14(22) (2022) 4793 https://doi.org/10.3390/polym14224793.
M. Sobhy, R. M. Khafagy, A. A. Soliman, et al., Design of Biosensor Based on Graphene Oxide/ WO3/ Polyvinylidene Fluoride, Optical and Quantum Electronics 55 (2023) 789 https://doi.org/10.21203/rs.3.rs-2710142/v1.
H. Zhao, K. Shi, C. Zhang, J. Ren, M. Cui, N. Li, X. Ji, R. Wang, Spherical COFs decorated with gold nanoparticles and multiwalled carbon nanotubes as signal amplifier for sensitive electrochemical detection of doxorubicin, Microchemical Journal 182 (2022) https://doi.org/10.1016/j.microc.2022.107865.
M. Mehmandoust, Y. Khoshnavaz, F. Karimi, S. Çakar, M. Özacar, N. Erk, A novel 2-dimensional nanocomposite as a mediator for the determination of doxorubicin in biological samples, Environmental Research 213 (2022) https://doi.org/10.1016/j.envres.2022.113590.
M. Abbasi, M. Ezazi, A. Jouyban, E. Lulek, K. Asadpour-Zeynali, Y. Nuri Ertas, J. Houshyar, A. Mokhtarzadeh, A. Soleymani, An ultrasensitive and preprocessing-free electrochemical platform for the detection of doxorubicin based on tryptophan/polyethylene glycol-cobalt ferrite nanoparticles modified electrodes, Microchemical Journal 183 (2022) https://doi.org/10.102916/j.microc.2022.108055.
H. Guo, H. Jin, R. Gui, Z. Wang, J. Xia, F. Zhang, Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin, Sensors and Actuators B: Chemical 253 (2017) 50-57 https://doi.org/10.1016/j.snb.2017.06.095.
D. M. Stanković, Z. Milanović, L. Švorc, V. Stanković, D. Janković, M. Mirković, S. Vranješ Đurić, Screen printed diamond electrode as efficient “point-of-care” platform for submicromolar determination of cytostatic drug in biological fluids and pharmaceutical product, Diamond and Related Materials 113 (2021) https://doi.org/10.1016/j.diamond.2021.108277
M. Behravan, H. Aghaie, M. Giahi, L. Maleknia, Determination of doxorubicin by reduced graphene oxide/gold/polypyrrole modified glassy carbon electrode: A new preparation strategy, Diamond and Related Materials 117 (2021) https://doi.org/10.1016/j.diamond.2021.108478.
N. Thakur, V. Sharma, T. Abhishek Singh, A. Pabbathi, J. Das, Fabrication of novel carbon dots/cerium oxide nanocomposites for highly sensitive electrochemical detection of doxorubicin, Diamond and Related Materials 125 (2022) https://doi.org/10.1016/j.diamond.2022.109037.
T. Abhishek Singh, V. Sharma, N. Thakur, N. Tejwan, A. Sharma, J. Das, Selective and sensitive electrochemical detection of doxorubicin via a novel magnesium oxide/carbon dot nanocomposite based sensor, Inorganic Chemistry Communications 150 (2023) https://doi.org/10.1016/j.inoche.2023.110527.
S. Sun, X. Xu, N. Aiu, Z. Sun, Y. Zhai, S. Li, C. Xuan, Y. Zhou, X. Yang, T. Zhou, Q. Tian, Novel Electrochemical Sensor Based on Acetylene Black for the Determination of Doxorubicin in Serum Samples, International Journal of Electrochemical Science 17 (2022) https://doi.org/10.20964/2022.11.82.
J. Sharifi, H. Fayazfar, Highly sensitive determination of doxorubicin hydrochloride antitumor agent via a carbon nanotube/gold nanoparticle based nanocomposite biosensor, Bioelectrochemistry 139 (2021) https://doi.org/10.1016/j.bioelechem.2021.107741.
A. R. Alavi-Tabari, A. Khalilzadeh, H. Karimi-Maleh, Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle, Journal of Electroanalytical Chemistry 811 (2018) 84-88 https://doi.org/10.1016/j.jelechem.2018.01.034.
E. M. Materon, A. Wong, O. Fatibello-Filho, R. Censi Faria, Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs, Journal of Electroanalytical Chemistry 827 (2018) 64-72 https://doi.org/10.1016/j.jelechem.2018.09.010.
M. Rahimi, G. Bagheri, S. Jamilaldin Fatemi, A new sensor consisting of bird nest-like nanostructured nickel cobaltite as the sensing element for electrochemical determination of doxorubicin, Journal of Electroanalytical Chemistry 848 (2019) https://doi.org/10.1016/j.jelechem.2019.113333.
N. Hashemzadeh, M. Hasanzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari, A. Jouyban, Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma, Journal of Pharmaceutical Analysis 6(4) (2016) 235-241 https://doi.org/10.1016/j.jpha.2016.03.003.
S. Zia Mohammadi, F. Mousazadeh, S. Tajik, Simultaneous Determination of Doxorubicin and Dasatinib by using Screen-Printed Electrode/Ni-Fe Layered Double Hydroxide, Industrial & Engineering Chemistry Research 62(11) (2023) 4646-4654 https://doi.org/10.1021/acs.iecr.2c03105.
I. Rus, M. Tertis, C. Barb˘alat˘a, A. Porfire, I. Tomut˘a, R. S˘andulescu, C. Cristea, An Electrochemical Strategy for the Simultaneous Detection of Doxorubicin and Simvastatin for Their Potential Use in the Treatment of Cancer, Biosensors 11(15) (2021) https://doi.org/10.3390/bios11010015.
M. Wang, J. Lin, J. Gong, M. Mа, H. Tang, J. Liu, F. Yan, Rapid and sensitive determination of doxorubicin in human whole blood by vertically-ordered mesoporous silica film modified electrochemically pretreated glassy carbon electrodes, Royal Society of Chemistry Advances 11 (2021) 9021 https://doi.org/10.1039/d0ra10000e.
Y. Guo, Y. Chen, Q. Zhao, S. Shuang, C. Dong, Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets, Electroanalysis 23 (2011) 2400 - 2407 https://doi.org/10.1002/elan.201100259.
C. Zhang, X. Zhou, F. Yan, J. Lin, N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin Molecules 28 (2023) 6443 https://doi.org/10.3390/molecules28186443.
E. Haghshenas, T. Madrakian, A. Afkhami, Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples, Analytical and Bioanalytical Chemistry 408 (2016) 2577-2586 https://doi.org/10.1007/s00216-016-9361-y.
J. Fei, X. Wen, Y. Zhang, L. Yi, X. Chen, H. Cao Voltammetric determination of trace doxorubicin at a nano-titania/nafion composite film modified electrode in the presence of cetyltrimethylammonium bromide, Microchimica Acta 164 (2009) 85-91, https://doi.org/10.1007/s00604-008-0037-y.
M. Taei, F. Hasanpour, H. Salavati, S. Mohammadian, Fast and sensitive determination of doxorubicin using multi-walled carbon nanotubes as a sensor and CoFe2O4 magnetic nanoparticles as a mediator, Microchimica Acta 183 (2016) 49-56, https://doi.org/10.1007/s00604-015-1588-3.
S. Kummari, L. Panicker, K.V. Gobi, R. Narayan, Y.G. Kotagiri, Electrochemical Strip Sensor Based on a Silver Nanoparticle-Embedded Conducting Polymer for Sensitive In Vitro Detection of an Antiviral Drug, ACS Applied Nano Materials 6(13) (2023) 12381-12392 https://doi.org/10.1021/acsanm.3c02080.
G. Krishnaswamy, G. Shivaraja, S. Sreenivasa, Aruna Kumar D. B, Votammetric applications in Drug detection: Mini Review, Volatmmetry for Sensing Applications 11 (2022) 281-305 https://doi.org/10.2174/9789815039719122010013.
S. Sadak, I. Atay, S. Kurbanoglu, B. Uslu, Disposable Electrochemical Sensors for Biomedical Applications, ACS Recent Developments of Green Electrochemical Sensors 1437(8) (2023) 157-191 https://doi.org/10.1021/bk-2023-1437.ch008.
Z. Bagheri Nasab, F. Garkani Nejad, Electrochemical Sensor Based on a Modified Graphite Screen Printed Electrode for Amitriptyline Determination, Surface Engineering and Applied Electrochemistry 58 (2022) 100-108 https://doi.org/10.3103/S1068375522010070.
B. Bozal-Palabiyik, B. Dogan-Topal, S. A. Ozkan, B. Uslu, New trends in Electrochemical sensor modified with carbon nanotubes and graphene for pharmaceutical analysis, Recent Advances in Analytical Techniques 2 (2018) 249-301 https://doi.org/10.2174/9781681085746118020009.
A. V. Bounegru, I. Bounegru, Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications, Polymers 15(17) (2023) 3539; https://doi.org/10.3390/polym15173539.
S. Traipop, W. Jesadabundit, W. Khamcharoen, T. Pholsiri, S. Naorungroj, S. Jampasa, O. Chailapakul, Nanomaterial-based Electrochemical Sensors for Multiplex Medicinal Applications, Current Topics in Medicinal Chemistry 24(11) (2024) 986 - 1009 https://doi.org/10.2174/0115680266304711240327072348
M. Wang, J. Lin, J. Gong, M. Ma, H. Tang, J. Liu, F. Yan F, Rapid and sensitive determination of doxorubicin in human whole blood by vertically-ordered mesoporous silica film modified electrochemically pretreated glassy carbon electrodes, Royal Society of Chemistry Advances 11 (2021) 9021-9028 https://doi.org/10.1039/D0RA10000E.
Y. Guo, Y. Chen, Q. Zhao, S. Shuang, C. Dong, Electrochemical Sensor for Ultrasensitive Determination of Doxorubicin and Methotrexate Based on Cyclodextrin-Graphene Hybrid Nanosheets, Electroanalysis 23(10) (2011) 2400-2407 https://doi.org/10.1002/elan.201100259.
J. Soleymani, M. Hasanzadeh, N. Shadjou, M. Khoubnasab Jafari, J. V. Gharamaleki, M. Yadollahi, A. Jouyban, A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene-based nanocomposite modified glassy carbon electrode, Materials Science and Engineering: C 61 (2016) 638-650 https://doi.org/10.1016/j.msec.2016.01.003.
S. M. Ilies, B. Schinteie, A. Pop, S. Negrea, C. Cretu, E. I. Szerb, F. Manea, Graphene Quantum Dots and Cu(I) Liquid Crystal for Advanced Electrochemical Detection of Doxorubicin in Aqueous Solutions, Nanomaterials 11 (2021) 2788 https://doi.org/10.3390/nano11112788.
F. Chekin, V. Myshin, R. Ye, S. Melinte, S. K. Singh, S. Kurungot, R. Boukherroub, S. Szunerits, Graphene-modified electrodes for sensing doxorubicin hydrochloride in human plasma, Analytical and Bioanalytical Chemistry 411 (2019) 1509-1516, https://doi.org/10.1007/s00216-019-01611-w.
E. Hghshenas, T. Madrakian, A. Afkhami, Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples, Analytical and Bioanalytical Chemistry 408 (2019) 2577-2586 https://doi.org/10.1007/s00216-016-9361-y.
P. Paunović, A. Grozdanov, I. Dimitrievska, A. Tomova, Voltammetric Detection of Diclofenac with Screen-printed Electrodes Based on Graphene and PVDF-Modified Graphene, Chemistry in Industry 73(7-8) (2024) 293-302 https://doi.org/10.15255/KUI.2023.058.
H. Imran, Y. Tang, S. Wang, X. Yan, C. Liu, L. Guo, E. Wang, C. Xu, Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review, Molecules 29(1) 2024 31 https://doi.org/10.3390/molecules29010031.
I. M. Аpetrei, C. Apetrei, Voltametric determination of melatonin using a graphene-based sensor in pharmaceutical products, International Journal of Nanomedicine 11 (2016) 1859-1866 http://doi.org/10.2147/IJN.S104941.
R. C. Carvalho, A. J. Betts, J. F. Cassidy, Diclofenac determination using CeO2 nanoparticle modified screen-printed electrodes - A study of background correction, Microchemical Journal 158 (2020) 105258 https://doi.org/10.1016/j.microc.2020.105258.
U. Ciltas, B. Yilmaz, S. Kaban, B. K. Akcay, G. Nazik, Study on the interaction between isatin-β-thiosemicarbazone and calf thymus DNA by spectroscopic techniques. Iranian Journal of Pharmaceutical Research 15 (2014) 715-722 https://doi.org/10.22037/ijpr.2015.1691.
E. S. Gil, R. O. Couto, Flavonoid electrochemistry: a review on the electroanalytical applications, Brazilian Journal of Pharmacognosy 23 (2013) 542-558 https://doi.org/10.1590/S0102-695X2013005000031.
J. A. Gothi Grace, A. Gomathi, C. Vedhi, Electrochemical behaviour of 1,4-diaminoanthra-9,10-quinone at conducting polymer based modified electrode, Journal of Advanced Chemical Sciences 2(3) (2016) 366-368 ISSN: 2394-5311.
S. Guan, X. Fu, B. Zhang, M. Lei, Z. Peng, Cation-exchange-assisted formation of NiS/SnS2 porous nanowalls with ultrahigh energy density for battery-supercapacitor hybrid devices, Journal of Materials Chemistry A 6 (2020) 3300-3310 https://doi.org/10.1039/C9TA11517J.
G. A. J. Merghani, A. A. Elbashir, Development of chemically modified electrode using cucurbit(6)uril to detect ranitidine hydrochloride in pharmaceutical formulation by voltammetry, Journal of Analytical and Pharmaceutical Research 7 (2018) 634-639 https://doi.org/10.15406/japlr.2018.07.00294.
H. Beitollahi, M. Hamzavi, M. Torkzadeh-Mahani, Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode, Materials Science and Engineering: C 52 (2015) 297-305 https://doi.org/10.1016/j.msec.2015.03.031.
W. He, Y. Ding, W. Zhang, L. Ji, X. Zhang, F. Yang, A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles, Journal of Electroanalytical Chemistry 775 (2016) 205-211 https://doi.org/10.1016/j.jelechem.2016.06.001.
P. Paunović, A. Grozdanov, I. Dimitrievska, M. Paunović, M. Mitevska, Sofia Electrochemical Days, Irradiation Treatment on Sensing Performances of Screen-Printed Electrodes Aimed for Monitoring of Anticancer Drug - Doxorubicin, Varna, Bulgaria, 2024, p. 14.
E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers, and Materials Scientists, VCH Publishers Inc., New York, USA, 1993, ISBN: 978-0-471-18858-2.
L. M. Silva, L. A. Faria, J. F. C. Boodts, Determination of the morphology factor of oxide layers, Electrochimica Acta 47 (2001) 395-403 https://doi.org/10.1016/S0013-4686(01)00738-1.
Y. Chen, Y. Zhang, Z. Wu, X. Peng, T. Su, J. Cao, B. He, S. Li, Biodegradable poly(ethylene glycol)-poly(ε-carprolactone) polymeric micelles with different tailored topological amphiphilies for doxorubicin (DOX) drug delivery, Royal Society of Chemistry Advances 63 (2016) http://doi.org/10.1039/C6RA06040D.
J. Liang, Z. Zhang, H. Zhao, S. Wan, X. Zhai, J. Zhou, R. Liang, Q. Deng, Y. Wu, G. Lin, Simple and rapid monitoring of doxorubicin using streptavidin-modified microparticle-based time-resolved fluorescence immunoassay, Royal Society of Chemistry Advances 8 (2018) 15621-15631 https://doi.org/10.1039/C8RA01807C.
R. Bartzatt, E. Weidner, Analysis for doxorubicin by spectrophotometry and reversed phase high performance liquid chromatography (HPLC), Current Topics in Analytical Chemistry 9 (2012) 63-69 (PDF) Analysis for doxorubicin by spectrophotometry and reversed phase high performance liquid chromatography (HPLC)
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.