Multimetodolological characterization of an optimized carbon/np TiO2 nanoparticles electrode

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2652

Keywords:

Carbon based electrode, cyclic voltammetry, Fourier transform infrared spectrometry, scanning electron microscopy, atomic force microscopy

Abstract

This present work describes an optimized electrochemical sensor made of a carbon electrode modified with TiO2 nanoparticles, which was used for the electrochemical characterization of polyphenols in natural wine. The aim of this study is to investigate the influence of specific binders and nanoparticles on the physicochemical and electro-chemical properties of modified carbon electrodes. The imaging techniques (scanning electron microscopy with energy dispersive X-ray spectroscopy, atomic force microscopy) showed that the electrode material becomes denser with a higher binder content and that TiO2 nanoparticles are almost evenly distributed despite the manual preparation of the carbon paste. The results show that the modified carbon paste with 40 vol.% paraffin oil and 8 wt.% TiO2 nanoparticles has the lowest surface roughness, anodic current and electroactive surface area, which is consistent with the reported lowest resistance, as well as the highest degree of reversibility compared to the standard reversible redox system ([Fe(CN)6]3-/4-) within the electrode material. 

Downloads

Download data is not yet available.

References

[1] J. Bai, B. Zhou, Titanium Dioxide Nanomaterials for Sensor Applications, Chemical Reviews 114 (2014) 10131-10176. https://doi.org/10.1021/cr400625j

[2] K. G. Manjunatha, B. E. Kumara Swamy, H. D. Madhuchandra, K. A. Vishnumurthy, Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline, Chemical Data Collections 31 (2021) 100604. https://doi.org/10.1016/j.cdc.2020.100604

[3] J. Vatamanu, L. Cao, O. Borodin, D. Bedrov, G. D. Smith, On the Influence of Surface Topography on the Electric Double Layer Structure and Differential Capacitance of Graphite/Ionic Liquid Interfaces, The Journal of Physical Chemistry Letters 2 (2011) 2267-227. https://doi.org/10.1021/jz200879a

[4] D. Menshykau, I. Streeter, R. G. Compton, Influence of Electrode Roughness on Cyclic Voltammetry, The Journal of Physical Chemistry C 112 (2008) 14428-14438. https://pubs.acs.org/doi/10.1021/jp8047423

[5] K. I. Popov, N. D. Nikolić, P. M. Živković, G. Branković, The effect of the electrode surface roughness at low level of coarseness on the polarization characteristics of electrochemical processes, Electrochimica Acta 55 (2010) 1919-1925. https://doi.org/10.1016/j.electacta.2009.10.085

[6] N. P. Shetti, D. S. Nayak, Sh. J. Malode, R. M. Kulkarni, An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode, Sensors and Actuators B: Chemical 247 (2017) 858-867. https://doi.org/10.1016/j.snb.2017.03.102.

[7] D. S. Rajawat, N. Kumar, S. P. Satsangee, Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder, Journal of Analytical Science and Technology 5 (2014) 19. http://www.jast-journal.com/content/5/1/19

[8] Y. Liu, X. Xu, C. Ma, F. Zhao, K. Chen, Morphology Effect of Bismuth Vanadate on Electrochemical Sensing for the Detection of Paracetamol, Nanomaterials 12 (2022) 1173. https://doi.org/10.3390/nano12071173

[9] F. Sopaj, F. Loshaj, A. Contini, E. Mehmeti, A. Veseli, Preparation of an efficient and selective voltammetric sensor based on screen printed carbon ink electrode modified with TiO2 nanoparticles for Azithromycin quantification, Results in Chemistry 6 (2023) 101123. https://doi.org/10.1016/j.rechem.2023.101123

[10] G. Dobrescu, R. Georgescu-State, F. Papa, J. F. van Staden, R. N. State, Fractal Properties of Composite-Modified Carbon Paste Electrodes—A Comparison between SEM and CV Fractal Analysis, Fractal and Fractional 8 (2024) 205. https://doi.org/10.3390/fractalfract8040205

[11] S. Oliveira Luciana, F. G. Alba Juan, L. Silva Valdinete, T. Ribeiro Rogério, H. L. Falcão Eduardo, M. Navarro, The effect of surface functional groups on the performance of Graphite powders used as electrodes, Journal of Electroanalytical Chemistry 818 (2018) 106-113. https://doi.org/10.1016/j.jelechem.2018.04.022

[12] M. Khodari, G. A. M. Mersal, E. M. Rabie, H. F. Assaf, Electrochemical Sensor based on Carbon Paste Electrode Modified by TiO2 nano-particles for the Voltammetric Determination of Resorcinol, International Journal of Electrochemical Science 13 (2018) 3460-3474. http://dx.doi.org/10.20964/2018.04.04

[13] S. I. Rabie Malha, A. A. Lahcen, F. Arduini, A. Ourari, A. Amine, Electrochemical Characterization of Carbon Solid-like Paste Electrode Assembled Using Different Carbon Nanoparticles, Electroanalysis 27 (2016) 1044-1051. https://doi.org/10.1002/elan.201500637

[14] G. S. Lobón, A. Yepez, L. F. Garcia, R. L. Morais, B. G. Vaz, V. V. Carvalho, G. A. Rodrigues de Oliveira, R. Luque, E. Gil, Efficient electrochemical remediation of microcystin-LR in tap water using designer TiO2@carbon electrodes, Scientific Reports 7 (2017) 41326. https://dx.doi.org/10.1038%2Fsrep41326

[15] I. Švancara, A. Walcarius, K. Kalcher, K. Vytřas, Carbon paste electrodes in the new Millennium, Central European Journal of Chemistry 7 (2009) 598-656. https://doi.org/10.2478/s11532-009-0097-9

[16] C. Báez, F. Navarro, F. Fuenzalida, M. J. Aguirre, M. C. Arévalo, M. Afonso, C. García, G. Ramírez, J. A. Palenzuela, Electrical and Electrochemical Behavior of Carbon Paste Electrodes Modified with Ionic Liquids Based in N-Octylpyridinium Bis(Trifluoromethylsulfonyl)Imide. A Theoretical and Experimental Study, Molecules 24 (2019) 3382-3399. https://doi.org/10.3390/molecules24183382

[17] S. Mićin, B.N. Malinović, T. Đurčić, Development and characterization of electrochemical sensors based on carbon modified with TiO2 nanoparticles, Hemijska Industrija 76 (2022) 147-158. (In Serbian) https://doi.org/10.2298/HEMIND220105013M

[18] S. Mićin, N. Ivošević DeNardis, S. Martinez, V. Špada, B. N. Malinović, Characterization of wine polyphenols with a carbon/nanoparticle TiO2 electrode, Journal of Electrochemical Science and Engineering 14 (2024) 583-599. https://doi.org/10.5599/jese.2395

[19] X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, F. Kong, Q. Wang, S. Dai, J. H. Pan, Anatase and rutil in evonik aeroxide P25: Heterojunctioned or individual nanoparticles, Catalysis Today 300 (2017) 12-17. http://dx.doi.org/10.1016/j.cattod.2017.06.010

[20] M.H. Mashhadizadeh, E. Afshar, Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs, Electrochimica Acta 87 (2013) 816-823. https://doi.org/10.1016/j.electacta.2012.09.004 493

[21] I. Piljac, Senzori fizikalnih veličina i elektroanalitičke metode, Mediaprint, Zagreb, Hrvatska, 2010. (In Croatian) ISBN 978-953-58487-0-7

[22] I. Švancara, M. Hvízdalová, K. Vytřas, K. Kalcher, R. Novotný, A microscopic study on carbon paste electrodes, Electroanalysis 8 (1996) 61-65. https://doi.org/10.1002/elan.1140080113

[23] T. Radoman, J. Džunuzović, K. Jeremić, A. Marinković, P. Spasojević, I. Popović, E. Džunuzović, Uticaj veličine nanočestica TiO2 i njihove površinske modifikacije na reološka svojstva alkidne smole, Hemijska Industrija 67 (2013) 923-932. (In Serbian) https://doi.org/10.2298/HEMIND131106081R

[24] R. A. Farghali, R. A. Ahmed, A. A. Alharthi, Synthesis and Characterization of Electrochemical Sensor Based on Polymeric/TiO2 Nanocomposite Modified with Imidizolium Ionic Liquid for Determination of Diclofenac, International Journal of Electrochemical Science 13 (2018) 10390-10414. https://doi.org/10.20964/2018.11.16

[25] National Center for Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov /compound/ 6529#section=FTIR-Spectra (accessed 11. 05. 2024).

[26] S. K. Sivan, S. Sh. Shankar, N. Sajina, A. K. Padinjareveetil, R. Pilankatta, V. B. Sameer Kumar, B. Mathew, B. George, P. Makvandi, M. Černík, V. V. T. Padil, R. S. Varma, Fabrication of a Greener TiO2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb2+ Ions in Plastic Toys, ACS Omega 5 (2020) 25390−25399. https://pubs.acs.org/doi/full/10.1021/acsomega.0c03781

[27] V. M. Araujo, O.A. Pinto, V. I. Paz Zanini, Addressing the surface coverage of Au nano-agglomerates and the electrochemical properties of modified carbon paste electrodes: Experimental and theoretical studies on ascorbic acid oxidation, Colloids and Surfaces B 200 (2021) 111585. https://doi.org/10.1016/j.colsurfb.2021.111585

[28] J. Melcher, N. Barth, C. Schilde, A. Kwade, D. Bahnemann, Influence of TiO2 agglomerate and aggregate sizes on photocatalytic activity, Journal of Materials Science 52 (2016) 1047-1056. https://doi.org/10.1007/s10853-016-0400-z

[29] F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V-D. Hodoroaba, V. Maurino, Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles, Applied Catalysis B: Environmental 216 (2017) 80-87. https://doi.org/10.1016/j.apcatb.2017.05.046

[30] N. P. Shettia, D. S. Nayaka, S. J. Malodea, R. M. Kulkarni, An electrochemical sensor for clozapine at ruthenium doped TiO2 nanoparticles modified electrode, Sensors and Actuators B 247 (2017) 858-867. http://dx.doi.org/10.1016/j.snb.2017.03.102

[31] I. Švancara, J. Konvalina, K. Schachl, K. Kalcher, K. Vytřas, Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode, Electroanalysis 10 (1998) 435-441. https://doi.org/10.1002/(SICI)1521-4109(199805)10:6<435::AID-ELAN435>3.0.CO;2-J

[32] J. Đorđević, Z. Papp, V. Guzsvány, I. Švancara, T.Trtić-Petrović, M. Purenović, K. Vytřas, Voltammetric Determination of the Herbicide Linuron Using a Tricresyl Phosphate-Based Carbon Paste Electrode, Sensors 12 (2012) 148-161. https://doi.org/10.3390/s120100148

[33] K. Vytřas, J. Konvalina, New Possibilities of Potentiometric Stripping Analysis Based on Ion-Pair Formation and Accumulation of Analyte at Carbon Paste Electrodes. Preliminary Note, Electroanalysis 10 (1998) 787-790. https://doi.org/10.1002/(SICI)1521-4109(199809)10:11<787::AID-ELAN787>3.0.CO;2-Y

Published

22-04-2025

Issue

Section

Electroanalytical chemistry

How to Cite

Multimetodolological characterization of an optimized carbon/np TiO2 nanoparticles electrode: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2652. https://doi.org/10.5599/jese.2652

Similar Articles

1-10 of 425

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)