Characterization of wine polyphenols with a carbon/nanoparticle TiO2 electrode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2395Keywords:
Amperometric sensors, modified carbon paste electrode, TiO2 nanoparticles, phenolic compounds, wine analysisAbstract
The positive effects of polyphenolic compounds on the sensory characteristics of wine and human health indicate a great need for a simple, fast and easily accessible method to determine the content of polyphenols in wine. The aim of this study is the electrochemical characterization of polyphenolic compounds in natural wine samples using a modified carbon paste electrode with TiO2 nanoparticles (MCPE/npTiO2) and improved voltammogram processing to obtain indicative data for polyphenols. The most marked influence of the modification of CPE with TiO2 nanoparticles was an increased sensitivity to electrooxidation, which is reflected in an increase of the anodic peak current. Of the five tested polyphenols, i.e., gallic acid (GA), caffeic acid (CA), catechin (CT), quercetin (QV) and resveratrol (RE), the current maximum of the first two oxidation peaks increased only for GA by a factor of about 2 and for CT by a factor of about 1.5. Of the three red wines, Vranac (VR), Merlot (ME), Cabernet Sauvignon (CS); three white wines, Graševina (GR), Temjanika (TE), Chardonnay (CS) and one rose wine, Belrose Mediterranée Rosé (RO) tested, an increase by a factor of about 2.5 was observed for two red wines (VR, CS) and by a factor of 1.5 for one red wine (ME), one white wine (GR), and the rose wine (RO), while no increase in the current signal was observed for one of the white wines (CS). The most significant increase in the voltammetric signal of GA at the MCPE/npTiO2 compared to other studied polyphenols can be explained by its higher affinity for adsorption on TiO2 nanoparticles. The investigated modified electrode provides an improved, linear and reproducible voltammetric response in wine samples. Consequently, MCPE/npTiO2 represents a good basis for the further development of an integrated sensor/data system with the possibility of a broader application for the detection of polyphenols, especially GA, as an aroma and visually relevant parameter in winemaking.
Downloads
References
R. Gutiérrez-Escobar, M. J. Aliaño-González, E. Cantos-Villar, Wine Polyphenol Content and Its Influence on Wine Quality and Properties, Molecules 26 (2021) 718-772. https://doi.org/10.3390/molecules26030718
B. Lorrain, I. Ky, L. Pechamat, P.-L. Teissedre, Evolution of Analysis of Polyphenols from Grapes, Wines, and Extracts, Molecules 18 (2013) 1076-1100. https://doi.org/10.3390/molecules18011076
B. Nemzer, D. Kalita, A. Y. Yashin, Y. I. Yashin, Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health, Beverages 8 (2022) 1. https://doi.org/10.3390/beverages8010001
R. González-Domínguez, O. Jáuregui, P. Mena, K. Hanhineva, F. J. Tinahones, D. Angelino, C. Andrés-Lacueva, Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites, International Journal of Obesity 44 (2020) 2372-2381. https://doi.org/10.1038/s41366-020-0628-1
A. P. Nel, Tannins and Anthocyanins: From Their Origin to Wine Analysis, South African Journal of Enology and Viticulture 39 (2018) 1-20. http://dx.doi.org/10.21548/39-1-1503
R. Perestrelo, M. Bordiga, M. Locatelli, C. Silva, J. S. Câmara, Polyphenols, biogenic amines and amino acids patterns in Verdelho wines according to vintage, Microchemical Journal 153 (2020) 104383. https://org/10.1016/j.microc.2019.104383
A. Mao, H. Li, Z. Cai, X. Hu, Determination of mercury using a glassy carbon electrode modified with nano TiO2 and multi-walled carbon nanotubes composites dispersed in a novel cationic surfactant, Journal of Electroanalytical Chemistry 751 (2015) 23-29. https://doi.org/10.1016/j.jelechem.2015.04.034
S. K. Hassaninejad-Darzi, F. Shajie, A Sensitive Voltammetric Determination of Anti-Parkinson Drug Pramipexole Using Titanium Dioxide Nanoparticles Modified Carbon Paste Electrode, Journal of the Brazilian Chemical Society 28 (2017) 529-539. https://doi.org/10.5935/0103-5053.20160192
M. Arvand, N.Ghodsi, A. Zanjanchi, A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine, Biosensors and Bioelectronics 77 (2016) 837-844. https://doi.org/10.1016/j.bios.2015.10.055
M. H. Mashhadizadeh, E. Afshar, Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs, Electrochimica Acta 87 (2013) 816-823. https://doi.org/10.1016/j.electacta.2012.09.004
I. Švancara, K. Kalcher, A. Walcarius, K. Vytřas, Electroanalysis with Carbon Paste Electrodes, CRC Press, Taylor & Francis Group, Boca Raton, USA, 2012, p. 250. https://doi.org/10.1201/b11478
S. Mićin, B. N. Malinović, T. Đurčić, Development and characterization of electrochemical sensors based on carbon modified with TiO2 nanoparticles, Hemijska Industrija 76 (2022) 147-158 (in Serbian). https://doi.org/10.2298/HEMIND220105013M
J. Tashkhourian, S. F. N. Ana, S. Hashemnia, M. R. Hormozi-Nezhad, Construction of a modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid, Journal of Solid State Electrochemistry 17 (2013) 157-165. https://doi.org/10.1007/s10008-012-1860-y
E. M. Espinoza, J. A. Clark, J.Soliman, J. B. Derr, M. Morales, V. I.Vullev, Practical Aspects of Cyclic Voltammetry: How to Estimate Reduction Potentials When Irreversibility Prevails, Journal of The Electrochemical Society 166 (2019) H3175-H3187. https://doi.org/10.1149/2.0241905jes
X. Jiang, M. Manawan, T. Feng, R. Qian, T. Zhao, G. Zhou, F. Kong, Q. Wang, S. Dai, J.H. Pan, Anatase and rutil in evonik aeroxide P25: Heterojunctioned or individual nanoparticles?, Catalysis Today 300 (2017) 12-17. https://doi.org/10.1016/j.cattod.2017.06.010
A. S. Arribas, M. Martínez-Fernández, M. Chicharro, The role of electroanalytical techniques in analysis of polyphenols in wine, Trends in Analytical Chemistry 34 (2012) 78-96. https://doi.org/10.1021/jf001044u
P. A. Kilmartin, H. Zou, A. L. Waterhouse, A Cyclic Voltammetry Method Suitable for Characterizing Antioxidant Properties of Wine and Wine Phenolics, Journal of Agricultural and Food Chemistry 49 (2001) 1957-1965. https://doi.org/10.1021/jf001044u
C. O. Chikere, N. H. Faisal, P. Kong Thoo Lin, C. Fernandes, The synergistic effect between graphene oxide nanocolloids and silicon dioxide nanoparticles for gallic acid sensing, Journal of Solid State Electrochemistry 23 (2019) 1795-1809. https://doi.org/10.1007/s10008-019-04267-9
G. Ziyatdinova, E. Guss, E. Morozova, H. Budnikov, R. Davletshin, V. Vorobev, Y. Osin. Simultaneous voltammetric determination of gallic and ellagic acids in cognac and brandy using electrode modified with functionalized SWNT and poly(pyrocatechol violet), Food Analytical Methods 12 (2019) 2250-2261. https://doi.org/10.1007/s12161-019-01585-6
M. Pumera, A. Escarpa, Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications, Electrophoresis 30 (2009) 3315-3323. https://doi.org/10.1002/elps.200900008
I. Zrinski, S. Martinez, E. A. Gospić, Catalytic and photocatalytic effects of TiO2 nanoparticles on electrooxidation of common antioxidants on carbon paste, Journal of Solid State Electrochemistry 25 (2021) 1591-1600. https://doi.org/10.1007/s10008-021-04937-7
S. Lisnund, V. Blay, K. Chansaenpak, P. Pinyou, Voltammetric Determination of Gallic Acid with a Glassy Carbon Electrode modified with Reduced Graphene Oxide, International Journal of Electrochemical Science 15 (2020) 7214-7227. https://doi.org/10.20964/2020.08.06
V. S. Manikandan, B. Sidhureddy, A. R. Thiruppathi, A. Chen, Sensitive Electrochemical Detection of Caffeic Acid in Wine Based on Fluorine-Doped Graphene Oxide, Sensors 19 (2019) 1604. https://doi.org/10.3390/s19071604
P. Janeiro, A.M. Oliveira Brett, Catechin electrochemical oxidation mechanisms, Analytica Chimica Acta 518 (2004) 109-115. https://doi.org/10.1016/j.aca.2004.05.038
A. Şenocak, T. Basova, E. Demirbas, M. Durmuş, Direct and Fast Electrochemical Determination of Catehin in Tea Extracts using SWCNT-Subphthalocyanine Hibrid Material, Electroanalysis 31 (2019) 1697-1707. https://doi.org/10.1002/elan.201900214
R. Sokolová, Š. Ramešová, I. Degano, M. Hromadová, M. Gál, J. Žabka, The oxidation of natural flavonoid quercetin, Chemical Communications 48 (2012) 3433-3435. https://doi.org/10.1039/C2CC18018A
D. Saritha, A. R. Koirala, M. Venu, G. Dinneswara, A. VijayaBhaskar, B. Sitaram, G. Madhavi, K. A. Aruna, A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode, Electrochimica Acta 313 (2019) 523-531. https://doi.org/10.1016/j.electacta.2019.04.188
O. Corduneanu, P. Janeiro, A. M. Oliveira Brett, On the Electrochemical Oxidation of Resveratrol, Electroanalysis 18 (2006) 757-762. https://doi.org/10.1002/elan.200503469
L. Liu, Y. Zhou, Y. Kang, H. Huang, C. Li, M. Xu, B. Ye. Electrochemical Evaluation of trans-Resveratrol Levels in Red Wine Based on the Interaction between Resveratrol and Graphene, Journal of Analytical Methods in Chemistry 2017 (2017) 749025. https://doi.org/10.1155/2017/5749025
K. G. Manjunatha, B. E. Kumara Swamy, H. D. Madhuchandra, K. A. Vishnumurthy, Synthesis, characterization and electrochemical studies of titanium oxide nanoparticle modified carbon paste electrode for the determination of paracetamol in presence of adrenaline, Chemical Data Collections 31 (2021) 100604. https://doi.org/10.1016/j.cdc.2020.100604
P. Z. Araujo, P. J. Morando, M. A. Blesa, Interaction of Catechol and Gallic Acid with Titanium Dioxide in Aqueous Suspensions. 1. Equilibrium Studies, Langmuir 21 (2005) 3470-3474. https://doi.org/10.1021/la0476985
O. Mahotkina, P. A. Kilmartin, Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: Cyclic voltammetry, Journal of Electroanalytical Chemistry 633 (2009) 165-174. https://doi.org/10.1016/j.jelechem.2009.05.007
C. O. Chikere, E. Hobben, N. H. Faisal, P. Kong-Thoo-Lin, C. Fernandez, Electroanalytical determination of gallic acid in red and white wine samples using cobalt oxide nanoparticles-modified carbon-paste electrodes, Microchemical Journal 160 (2021) 105668. https://doi.org/10.1016/j.microc.2020.105668
S. Sterneder, V. Stoeger, C. A. Dugulin, K. I. Liszt, A. Di Pizio, K. Korntheuer, A. Dunkel, R. Eder, J. P. Ley, V. Somoza, Astringent Gallic Acid in Red Wine Regulates Mechanisms of Gastric Acid Secretion via Activation of Bitter Taste Sensing Receptor TAS2R4, Journal of Agricultural and Food Chemistry 69 (2021) 10550-10561. https://doi.org/10.1021/acs.jafc.1c03061
X.-K. Zhang, F. He, B. Zhang, M.J. Reeves, Y. Liu, X. Zhao, C.-Q. Duan, The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging, Food Research International 106 (2018) 568-579. https://doi.org/10.1016/j.foodres.2017.12.054
©2024 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article
distributed under the terms and conditions of the Creative Commons Attribution license
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.