Exploring and evaluating the relationship between Saccharomyces cerevisiae biofilm maturation on carbon felt anodes and microbial fuel cell performance
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2383Keywords:
Bio-electrochemical fuel cell, carbon anode, biofilm formation, voltage enhancement, biofilm detachment, power densityAbstract
Microbial fuel cells (MFCs) hold great promise as sustainable bioenergy sources, with their performance intricately linked to the formation and characteristics of biofilms. This study delves into the bio-electrochemical perspective of biofilms in MFCs, aiming to elucidate their pivotal role in MFC functionality. The investigation focused on a yeast-based MFC operated through 48 h per cycle, with cycle 5 marking the maturation stage of biofilm formation. During this phase, voltage stability was observed, with a stationary phase voltage of 38.9±2.6 mV. Notably, cycle 5 exhibited a significant boost in power density, reaching 8.82 mW m-2, accompanied by the lowest internal resistance of 100 Ω. Furthermore, the electron transfer rate constant from cycle 5 is 1.14±0.02 s-1, 57 times higher than the initial, underscoring biofilm's catalytic potential. Additionally, cyclic voltammetry unveiled non-linear relationships between redox reaction peak current and scan rate, with a consistent DEp of ~219 mV at 100 mV s-1. Importantly, elemental analysis disclosed incorporating diverse elements (Na, Al, Si, P, S, Cl, K, Ca, Cr, and Fe) into the carbon felt, signifying their association with biofilm development. These findings offer critical insights into optimizing MFC performance through biofilm modulation, advancing sustainable bioenergy technologies.
Downloads
References
T. Naaz, A. Kumar, A. Vempaty, N. Singhal, S. Pandit, P. Gautam, S. P. Jung, Recent advances in biological approaches towards anode biofilm engineering for improvement of extracellular electron transfer in microbial fuel cells, Environmental Engineering Research 28(5) (2023) 220666. https://doi.org/10.4491/eer.2022.666
I. Chattopadhyay, T. M. Usman, S. Varjani, Exploring the role of microbial biofilm for industrial effluents treatment, Bioengineered 13(3) (2022) 6420-6440. https://doi.org/10.1080/21655979.2022.2044250
J. V. Boas, V. B. Oliveira, M. Simões, A. M. Pinto, Review on microbial fuel cells applications, developments and costs, Journal of Environmental Management 307 (2022) 114525. https://doi.org/10.1016/j.jenvman.2022.114525
D. A. Jadhav, A. A. Carmona-Martínez, A. D. Chendake, S. Pandit, D. Pant, Modeling and optimization strategies towards performance enhancement of microbial fuel cells, Bioresource Technology 320 (2021) 124256. https://doi.org/10.1016/j.biortech.2020.124256
L. Zhou, Y. Wu, S. Zhang, Y. Li, Y. Gao, W. Zhang, L. Tian, T. Li, Q. Du, S. Sun, Recent development in microbial electrochemical technologies: Biofilm formation, regulation, and application in water pollution prevention and control, Journal of Water Process Engineering 49 (2022) 103135. https://doi.org/10.1016/j.jwpe.2022.103135
Z. Syed, M. Sogani, J. Rajvanshi, & K. Sonu, Electroactive biofilm and electron transfer in microbial electrochemical systems, Scaling Up of Microbial Electrochemical Systems (2022) 29-48. https://doi.org/10.1016/B978-0-323-90765-1.00003-4
M. Pal, A. Shrivastava, R. K. Sharma, Electroactive biofilm development on carbon fiber anode by Pichia fermentans in a wheat straw hydrolysate based microbial fuel cell, Biomass and Bioenergy 168 (2023) 106682. https://doi.org/10.1016/j.biombioe.2022.106682
R. Hartmann, P. K. Singh, P. Pearce, R. Mok, B. Song, F. Díaz-Pascual, J. Dunkel, K. Drescher, Emergence of three-dimensional order and structure in growing biofilms, Nature Physics 15(3) (2019) 251-256. https://doi.org/10.1038/s41567-018-0356-9
H. Li, H. Liu, L. Zhang, A. Hieawy, Y. Shen, Evaluation of extracellular polymeric substances matrix volume, surface roughness and bacterial adhesion property of oral biofilm, Journal of Dental Sciences 18(4) (2023) 1723-1730. https://doi.org/10.1016/j.jds.2022.12.022
Y. Dhar, Y. Han, Current developments in biofilm treatments: Wound and implant infections, Engineered Regeneration 1 (2020) 64-75. https://doi.org/10.1016/j.engreg.2020.07.003
J. Greenman, I. Gajda, J. You, B. A. Mendis, O. Obata, G. Pasternak, I. Ieropoulos, Microbial fuel cells and their electrified biofilms, Biofilm 3 (2021) 100057. https://doi.org/10.1016/j.bioflm.2021.100057
A. A. Mier, H. Olvera-Vargas, M. Mejía-López, A. Longoria, L. Verea, P. J. Sebastian, D. M. Arias, A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes, Chemosphere 283 (2021) 131138. https://doi.org/10.1016/j.chemosphere.2021.131138
X. Wu, Z. Chen, Z. Lv, L. Zhang, F. Xin, Y. Li, G. Liu, W. Dong, P. Wei, H. Jia, Enhanced chloramphenicol-degrading biofilm formation in microbial fuel cells through a novel synchronous acclimation strategy, Journal of Cleaner Production 317 (2021) 128376. https://doi.org/10.1016/j.jclepro.2021.128376
Y. Hu, Y. Wang, X. Han, Y. Shan, F. Li, L. Shi, Biofilm biology and engineering of Geobacter and Shewanella spp. for energy applications, Frontiers in Bioengineering and Biotechnology 9 (2021) 786416. https://doi.org/10.3389/fbioe.2021.786416
M. Verma, V. Mishra, Recent trends in upgrading the performance of yeast as electrode biocatalyst in microbial fuel cells, Chemosphere 284 (2021) 131383. https://doi.org/10.1016/j.chemosphere.2021.131383
M. Christwardana, G. E. Timuda, N. Darsono, H. Widodo, K. Kurniawan, D. S. Khaerudini, Fabrication of a polyvinyl alcohol-bentonite composite coated on a carbon felt anode for improving yeast microbial fuel cell performance, Journal of Power Sources 555 (2023) 232366. https://doi.org/10.1016/j.jpowsour.2022.232366
M. Christwardana, H. Hadiyanto, S. A. Motto, S. Sudarno, K. Haryani, Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production, Biomass and Bioenergy 139 (2020) 105617. https://doi.org/10.1016/j.biombioe.2020.105617
P. Zhang, C. Yang, Y. Xu, H. Li, W. Shi, X. Xie, M. Lu, L. Huang, W. Huang, Accelerating the startup of microbial fuel cells by facile microbial acclimation, Bioresource Technology Reports 8 (2019) 100347. https://doi.org/10.1016/j.biteb.2019.100347
C. Bouyx, M. Schiavone, J. M. François, FLO11, a developmental gene conferring impressive adaptive plasticity to the yeast Saccharomyces cerevisiae, Pathogens 10(11) (2021) 1509. https://doi.org/10.3390/pathogens10111509
M. Xu, M. Sun, X. Meng, W. Zhang, Y. Shen, W. Liu, Engineering Pheromone-Mediated Quorum Sensing with Enhanced Response Output Increases Fucosyllactose Production in Saccharomyces cerevisiae, ACS Synthetic Biology 12(1) (2022) 238-248. https://doi.org/10.1021/acssynbio.2c00507
Y. Zhao, J. Wang, Q. Fu, H. Zhang, J. Liang, W. Xue, G. Zhao, H. Oda, Characterization and Antioxidant Activity of Mannans from Saccharomyces cerevisiae with Different Molecular Weight, Molecules 27(14) (2022) 4439. https://doi.org/10.3390/molecules27144439
K. Quan, J. Hou, Z. Zhang, Y. Ren, B. W. Peterson, H. C. Flemming, C. Mayer, H. J. Busscher, H. C. van der Mei, Water in bacterial biofilms: pores and channels, storage and transport functions, Critical reviews in microbiology 48(3) (2022) 283-302. https://doi.org/10.1080/1040841X.2021.1962802
P. K. Jha, H. Dallagi, E. Richard, M. Deleplace, T. Benezech, C. Faille, Does the vertical vs horizontal positioning of surfaces affect either biofilm formation on different materials or their resistance to detachment? Food Control 133 (2022) 108646. https://doi.org/10.1016/j.foodcont.2021.108646
T. Wang, Z. Guo, Y. Shen, Z. Cui, A. Goodwin, Accumulation mechanism of biofilm under different water shear forces along the networked pipelines in a drip irrigation system, Scientific Reports 10(1) (2020) 6960. https://doi.org/10.1038/s41598-020-63898-5
S.M. Tan, S.A. Ong, L.N. Ho, Y.S. Wong, C.Z.A. Abidin, W.E. Thung, T.P. Teoh, Polypropylene biofilm carrier and fabricated stainless steel mesh supporting activated carbon: Integrated configuration for performances enhancement of microbial fuel cell, Sustainable Energy Technologies and Assessments 46 (2021) 101268. https://doi.org/10.1016/j.seta.2021.101268
A. Erensoy, S. Mulayim, A. Orhan, N. Cek, A. Tuna, N. Ak, The system design of the peat-based microbial fuel cell as a new renewable energy source: The potential and limitations, Alexandria Engineering Journal 61(11) (2022) 8743-8750. https://doi.org/10.1016/j.aej.2022.02.020
G. Geetanjali, S. Rawat, R. Rani, S. Kumar, Kinetic modeling for miniaturize single-chambered microbial fuel cell: effects of biochemical reaction on its performance. Environmental Science and Pollution Research 31 (2023) 39015–39024. https://doi.org/10.1007/s11356-023-28798-x
J. Yang, Y. B. Sim, H. H. Joo, J. H. Jung, S. H. Kim, Enhanced continuous biohydrogen production using dynamic membrane with conductive biofilm supporter, Bioresource Technology 377 (2023) 128900. https://doi.org/10.1016/j.biortech.2023.128900
P. Y. Zhang, Z. L. Liu, Experimental study of the microbial fuel cell internal resistance, Journal of Power Sources 195(24) (2010) 8013-8018. https://doi.org/10.1016/j.jpowsour.2010.06.062
B. E. Logan, Microbial fuel cells, John Wiley & Sons, City, Country, 2008, doi or ISBN or URL
X. Zhao, Y. Zhou, J. Xu, G. Chen, Y. Fang, T. Tat, X. Xiao, Y. Song, S. Li, J. Chen, Soft fibers with magnetoelasticity for wearable electronics, Nature Communications 12(1) (2021) 6755. https://doi.org/10.1038/s41467-021-27066-1
R. G. Remya, B. R. Sreelekshmy, B. I. Bijimol, A. Ratheesh, S. M. A. Shibli, Strategic regulation of barrier characteristics of biofilms to enhance the extracellular electrogenic performance in MFCs: an electrochemical dynamic evaluation study, Sustainable Energy & Fuels 7(13) (2023) 3122-3133. https://doi.org/10.1039/D3SE00464C
W. Yang, J. Li, Q. Fu, L. Zhang, Z. Wei, Q. Liao, X. Zhu, Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives, Renewable and Sustainable Energy Reviews 136 (2021) 110460. https://doi.org/10.1016/j.rser.2020.110460
J. V. Boas, L. Peixoto, V. B. Oliveira, M. Simões, A. M. F. R. Pinto, Cyclic voltammetry study of a yeast-based microbial fuel cell, Bioresource Technology Reports 17 (2022) 100974. https://doi.org/10.1016/j.biteb.2022.100974
L. Fotouhi, M. Fatollahzadeh, M. M. Heravi, Electrochemical behavior and voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube, International Journal of Electrochemical Science 7(5) (2012) 3919-3928. https://doi.org/10.2116/analsci.28.497
Y. Hubenova, M. Mitov, Extracellular electron transfer in yeast-based biofuel cells: A review, Bioelectrochemistry 106 (2015) 177-185. https://doi.org/10.1016/j.bioelechem.2015.04.001
M. Christwardana, Y. Kwon, Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell, Bioresource Technology 225 (2017) 175-182. https://doi.org/10.1016/j.biortech.2016.11.051
M. Christwardana, D. Frattini, K. D. Duarte, G. Accardo, Y. Kwon, Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells, Applied Energy 238 (2019) 239-248. https://doi.org/10.1016/j.apenergy.2019.01.078
E. J. J. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101(1) (1979) 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3
L. A. Estudillo-Wong, C. Guerrero-Barajas, J. Vázquez-Arenas, N. Alonso-Vante, Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications, Surfaces 6(1) (2023) 2-28. https://doi.org/10.3390/surfaces6010002
M. Christwardana, J. Joelianingsih, L. A. Yoshi, Performance of yeast microbial fuel cell integrated with sugarcane bagasse fermentation for cod reduction and electricity generation, Bulletin of Chemical Reaction Engineering & Catalysis 16(3) (2021) 446-458. https://doi.org/10.9767/bcrec.16.3.9739.446-458
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Universitas Diponegoro
Grant numbers 266/UN7.M1/PP/III/2023