Electrochemical studies of lateral flow assay test results for procalcitonin detection

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1127

Keywords:

Cyclic voltammetry, lateral flow assay, gold nanoparticles, polyclonal antibody, monoclonal antibody, biomarker
Graphical Abstract

Abstract

In this study, the lateral flow assay (LFA) has been developed for the detection of bacterial infection (BI) by specific biomarker procalcitonin (PCT), without a need for complicated instrumentations and technical expertise. For the development of the assay, gold nanoparticles (AuNP) and their conjugates with antibodies specific to the model antigen PCT are assessed. Polyclonal antibody (pAb) labelled with gold nanoparticles (AuNP) to obtain the AuNP-pAb complex and the specific monoclonal antibody (mAb) have been dropped at the test zone. This complex is placed over the conjugate line of the LFA strip. In the absence of PCT or the presence of other biomarkers, the test line remained colourless, which revealed the specificity of assay towards PCT among a pool of various analytes. Herein, observations have been made through two different platforms for quantitative and qualitative analysis for the detection of PCT biomarker. The qualitative analysis has been performed on the basis of appearance red color in the test band, while for quantitative analysis, a novel approach has been adopted. Herein, the nitrocellulose membrane (paper strip) is cut out from the LFA strip and used for electrochemical studies under similar solution conditions. Different paper strips presented different cyclic voltammograms (CV) that could be correlated to varying PCT concentrations captured at the test line of the paper strip. The qualitative detection limit for PCT using this LFA was determined to be 2 ng ml-1 and the quantitative detection limit was 1 ng ml-1. The electrochemical response studies of the paper strip by CV technique revealed the sensitivity value of 0.695 mA ml ng-1.

Downloads

Download data is not yet available.

References

Y. Gupta, A.S. Ghrera, Archives of Microbiology 203 (2021) 3767-3784. https://doi.org/10.1007/s00203-021-02357-9

L.-M. Lei, J.-S. Wu, N.-Q. Gan, L. R. Song, Clinica Chimica Acta 348(1-2) (2004) 177-180. https://doi.org/10.1016/j.cccn.2004.05.019

T. Yu, S. Gao, A. Yin, Y. Tang, Y. Wu, L. Li, M. Li, Journal of Immunoassay and Immunochemistry 34(4) (2013) 365-375. https://doi.org/10.1080/15321819.2012.744999

L. Cinquanta, D.E. Fontana, N. Bizzaro, Autoimmunity Highlights 8(1) (2017) 9. https://doi.org/10.1007/s13317-017-0097-2

R. Gautam, K. Parajuli, T. Tshokey, J. Stenos, J. B. Sherchand, BMC Infectious Diseases 20 (2020) 138. https://doi.org/10.1186/s12879-020-4861-y

S. Sharma, J. Zapatero-Rodríguez, P. Estrela, R. O'Kennedy, Biosensors (Basel) 5(3) (2015) 577-601. https://doi.org/10.3390/bios5030577

B. N. Khlebtsov, R. S. Tumskiy, A. M. Burov, T. E. Pylaev, N. G. Khlebtsov, ACS Applied Nano Materials 2(8) (2019) 5020-5028. https://doi.org/10.1021/acsanm.9b00956

M. Sajid, A.-N. Kawde, M. Daud, Journal of Saudi Chemical Society 19(6) (2015) 689-705. https://doi.org/10.1016/j.jscs.2014.09.001

K. M. Koczula, A. Gallotta, Essays in Biochemistry 60(1) (2016) 111-120. https://doi.org/10.1042/EBC20150012

X.-Y. Shao, C.-R. Wang, C.-M. Xie, X.-G. Wang, R.-L. Liang, W.-W. Xu, Sensors (Basel) 17(3) (2017) 480. https://doi.org/10.3390/s17030480

N. Zhan, Y. Zhou, L. Mei, Y. Han, H. Zhang, Analytical Sciences 35(3) (2019)257-263. https://doi.org/10.2116/analsci.18p357

A. L. Vijayan, Vanimaya, S. Ravindran, R. Saikant, S. Lakshmi, R. Kartik, Manoj. G. Journal of Intensive Care 5 (2017) 5. https://doi.org/10.1186/s40560-017-0246-8

P. Schuetz, W. Albrich, B. Mueller, BMC Medicine 9 (2011) 107. https://doi.org/10.1186/1741-7015-9-107

A. Hohn, S. Schroeder, A. Gehrt, K. Bernhardt, B. Bein, K. Wegscheider, M. Hochreiter, BMC Infectious Diseases 13 (2013) 158. https://doi.org/10.1186/1471-2334-13-158

I. Samsudin, S. D. Vasikaran, The Clinical Biochemist Reviews 38(2) (2017) 59-68. https://pubmed.ncbi.nlm.nih.gov/29332972

K. V. Serebrennikova, J. V. Samsonova, A. P. Osipov, Microchimica Acta 186(7) (2019) 423. https://doi.org/10.1007/s00604-019-3550-2

K. Serebrennikova, J. Samsonova, A. Osipov, Nano-Micro Letters 10(2) (2018) 24. https://doi.org/10.1007/s40820-017-0180-2

K. V. Serebrennikova, J. V. Samsonova, A. P. Osipov, Moscow University Chemistry Bulletin 73(3) (2018) 131-134. https://doi.org/10.3103/S0027131418030070

A. Sharma Ghrera, Analytica Chimica Acta 1056 (2019) 26-33. https://doi.org/10.1016/j.aca.2018.12.047

C. M. Pandey, A. Sharma, G. Sumana, I. Tiwari, B. D. Malhotra, Nanoscale 5(9) (2013) 3800-3807. https://doi.org/10.1039/C3NR34355C

A. S. Ghrera, M. K. Pandey, B. D. Malhotra, Biosensors and Bioelectronics 80 (2016) 477-482. https://doi.org/10.1016/j.bios.2016.02.013

A. S. Ghrera, C. M. Pandey, Md. A. Ali, B. D. Malhotra, Applied Physics Letters 106(19) (2015) 193703. https://doi.org/10.1063/1.4921203

A. Sharma, C. M. Pandey, G. Sumana, U. Soni, S. Sapra, A. K. Srivastava, T. Chatterjee, B. D. Malhotra, Biosensors and Bioelectronics 38(1) (2012) 107-113. https://doi.org/10.1016/j.bios.2012.05.010

K. Ionue, P. Ferrante, Y. Hirano, T. Yasukawa, H. Shiku, T. Matsue, Talanta 73(5) (2007) 886-892. https://doi.org/10.1016/j.talanta.2007.05.008

Y. Huang, P. Kannan, L. Zhang, T. Chen, D.-H. Kim, RSC Advances 5(72) (2015) 58478-58484. https://doi.org/10.1039/C5RA10990F

W. Iwasaki, C. Kataoka, K. Sawadaishi, K. Suyama, N. Morita, M. Miyazaki, Sensors 20(17) (2020) 4781. https://doi.org/10.3390/s20174781

X. Zhu, P. Shah, S. Stoff, H. Liu, C.-Y. Li, Analyst 139(11) (2014) 2850-2857. https://doi.org/10.1039/C4AN00313F

J. Turkevich, P.C. Stevenson, J. Hillier, Disscussions of the Faraday Society 11 (1951) 55-75. https://doi.org/10.1039/DF9511100055

J. Dong, P. L. Carpinone, G. Pyrgiotakis, P. Demokritou, B. M. Moudgil, Kona Powder and Particle Journal 37 (2020) 224-232. https://dx.doi.org/10.14356 %2Fkona.2020011

P. Suchomel, L. Kvitek, R. Prucek, A. Panacek, A. Halder, S. Vajda, R. Zboril, Scientific Reports 8(1) (2018) 4589. https://doi.org/10.1038/s41598-018-22976-5

F. F. M. AL-Kazazz, K. A. F. AL-Imarah, I. A. Al-Hasnawi, L. Agelmashotjafar, B. A. Abdul-Majeed, International Journal of Engineering Research and Applications 3(6) (2013) 21-30.

V. D. Pham, H. Hoang, T. H. Phan, U. Conrad, H. H. Chu, Advances in Natural Sciences: Nanoscience and Nanotechnology 3(4) (2012) 045017. http://dx.doi.org/10.1088/2043-6262/3/4/045017

T. Feng, L. Ding, L. Chen, J. Di, Journal of Experimental Nanoscience 14(1) (2019) 13-22. https://doi.org/10.1080/17458080.2018.1520399

W. A. Ameku, W. R. de Araujo, C. J. Rangel, R. A. Ando, Thiago R. L. C. Paixão, ACS Applied Nano Materials 2(9) (2019) 5460-5468. https://doi.org/10.1021/acsanm.9b01057

A. Sharma, Z. Matharu, G. Sumana, P. R. Solanki, C. G. Kim, B. D. Malhotra, Thin Solid Films 519(3) (2010) 1213-1218. https://doi.org/10.1016/j.tsf.2010.08.071

X. Li, C. Zhao, X. Liu, Microsystems & Nanoengineering 1 (2015) 15014. https://doi.org/10.1038/micronano.2015.14

S. Kumar, S. Kumar, C.M. Pandey, B.D. Malhotra, Journal of Physics: Conference Series 704 (2016) 012010. https://doi.org/10.1088/1742-6596/704/1/012010

L. C. Shriver-Lake, D. Zabetakis, W. J. Dressick, D. A. Stenger, S. A. Trammell, Sensors 18(2) (2018) 328. https://dx.doi.org/10.3390%2Fs18020328

S. A. Trammell, L. C. Shriver-Lake, W. J. Dressick, Sensors and Actuators B 239 (2017) 951-961. https://doi.org/10.1016/j.snb.2016.08.087

Downloads

Published

28-11-2021

How to Cite

Gupta, Y. G., Kalpana, & Sharma Ghrera, A. (2021). Electrochemical studies of lateral flow assay test results for procalcitonin detection: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(2), 265–274. https://doi.org/10.5599/jese.1127

Issue

Section

Electrochemical Science