Development of electrode by using gold-platinum alloy nanoparticles for electrochemical detection of serum amyloid A protein
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2036Keywords:
Electrochemical biosensing, bimetallic nanoparticles, electrocatalysts, immuno¬electrode, inflammatory biomarkerAbstract
Gold-platinum alloy nanoparticles (AuPtNP) were electrochemically deposited on the surface of indium-tin-oxide (ITO) modified with (3-aminopropyl)triethoxysilane (APTES), after optimizing deposition conditions for the electroplating solution and number of deposition cycles. Different part ratios of Au/Pt used were 4/0, 3/1, 2/2, 1/3 and 0/4 (AuNP, Au3Pt1, Au2Pt2, Au1Pt3 and PtNP, respectively) in preparation of 1 mM solutions. FE-SEM, EDAX and XRD surface characterization techniques were used to confirm the presence of deposited AuPt alloy nanoparticles on the modified ITO surface. Electrochemical methods (CV, DPV and EIS) were used to investigate the electrochemical properties of prepared electrodes in the presence of ferri/ferrocyanide redox couple, which indicated the following increasing order of electrocatalytic peak current: Au < Au2Pt2 < Pt < Au1Pt3 < Au3Pt1. The most active electrode, Au3Pt1NP/APTES/ITO (with Au/Pt part ratio 3:1), was further used to fabricate the immunoelectrode SAA-Ab/Au3Pt1NP/APTES/ITO. The prepared immunoelectrode was tested for detection of serum amyloid A protein biomarker (APO-SAA) by immobilising SAA-specific antibodies (SAA ½ Ab) on its surface. Sensing studies on this immunoelectrode, performed by DPV technique, revealed the SAA biomarker detection in the linear range of 10 to 106 fg ml-1. The limit of detection was calculated as 7.0 fg ml-1.
Downloads
References
Y. Song, Y. Ma, Y. Wang, J. Di, Y. Tu, Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications, Electrochimica Acta 55 (2010) 4909-4914. https://doi.org/10.1016/j.electacta.2010.03.089
F. Xiao, F. Zhao, Y. Zhang, G. Guo, B. Zeng, Ultrasonic Electrodeposition of Gold−Platinum Alloy Nanoparticles on Ionic Liquid−Chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors, The Journal of Physical Chemistry C 113 (2009) 849-855. https://doi.org/10.1021/jp808162g
Y. Zhou, G. Yu, F. Chang, B. Hu, C.-J. Zhong, Gold-platinum alloy nanowires as highly sensitive materials for electrochemical detection of hydrogen peroxide, Analytica Chimica Acta 757 (2012) 56-62. https://doi.org/10.1016/j.aca.2012.10.036
H. Shen, M. Wang, W. Zhang, Y. Zhang, W. Wang, X. Cao, The bimetallic heterostructure Pt-Au nanoparticle array on Indium Tin Oxide electrode by electrodeposition and their high activity for the electrochemical oxidation of methanol, Journal of Alloys and Compounds 895 (2022) 162581. https://doi.org/10.1016/j.jallcom.2021.162581
A. Kathalingam, K.P. Marimuthu, K. Karuppasamy, Y.-S. Chae, H. Lee, H.-C. Park, H.-S. Kim, Structural and Mechanical Characterization of Platinum Thin Films Prepared Electrochemically on ITO/Glass Substrate, Metals and Materials International 27 (2021) 1554-1564. https://doi.org/10.1007/s12540-019-00527-5
H. Yu, J. Yu, L. Li, Y. Zhang, S. Xin, X. Ni, Y. Sun, K. Song, Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors, Frontiers in Chemistry 9 (2021) 677876. https://doi.org/10.3389/fchem.2021.677876
R. Chauhan, B. Nagar, P. R. Solanki, T. Basu, Development of Triglyceride Biosensor Based on a Platinum Nano Particle and Polypyrrole Nano Composite Electrode, Materials Focus 2 (2013) 316-323. https://doi.org/10.1166/mat.2013.1096
P. Si, N. Razmi, O. Nur, S. Solanki, C. M. Pandey, R. K. Gupta, B. D. Malhotra, M. Willander, A. de la Zerda, Gold nanomaterials for optical biosensing and bioimaging, Nanoscale Advances 3 (2021) 2679-2698. https://doi.org/10.1039/D0NA00961J
T. Ahuja, V. K. Tanwar, S. K. Mishra, D. Kumar, A. M. Biradar, A. M. Rajesh, Immobilization of Uricase Enzyme on Self-Assembled Gold Nanoparticles for Application in Uric Acid Biosensor, Journal of Nanoscience Nanotechnology 11 (2011) 4692-4701. https://doi.org/10.1166/jnn.2011.4158
H. H. Kyaw, S. H. Al-Harthi, A. Sellai, J. Dutta, Self-organization of gold nanoparticles on silanated surfaces, Beilstein Journal of Nanotechnology 6 (2015) 2345-2353. https://doi.org/10.3762/bjnano.6.242
G. Zhao, G. Liu, Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III), Nanomaterials 9 (2018) 41. https://doi.org/10.3390/nano9010041
M. Z. H. Khan, Nanoparticles Modified ITO Based Biosensor, Journal of Electronic Materials 46 (2017) 2254-2268. https://doi.org/10.1007/s11664-016-5172-3
Md. Z. H. Khan, Effect of ITO surface properties on SAM modification: A review toward biosensor application, Cogent Engineering 3 (2016) 1170097. https://doi.org/10.1080/23311916.2016.1170097
G. H. Sack, Serum amyloid A, Molecular Medicine 24 (2018) 46. https://doi.org/10.1186/s10020-018-0047-0
H. Miwata, T. Yamada, M. Okada, T. Kudo, H. Kimura, T. Morishima, Serum amyloid A protein in acute viral infections, Archives of Disease Childhood 68 (1993) 210-214. https://doi.org/10.1136/adc.68.2.210
E. Malle, F. C. De Beer, Human serum amyloid A (SAA) protein: a prominent acute-phase reactant for clinical practice, European Journal of Clinical Investigation 26 (1996) 427-435. https://doi.org/10.1046/j.1365-2362.1996.159291.x
B. Rezaei, N. Irannejad, Electrochemical detection techniques in biosensor applications, in Electrochemical Biosensors, A. A. Ensafi, Ed., Elsevier Inc., 2019, 11-43. https://doi.org/10.1016/B978-0-12-816491-4.00002-4
K. Y. Goud, K. K. Reddy, A. Khorshed, V. S. Kumar, R. K. Mishra, M. Oraby, A. H. Ibrahim, H. Kim, K. V. Gobi, Electrochemical diagnostics of infectious viral diseases: Trends and challenges, Biosensors and Bioelectronics 180 (2021) 113112. https://doi.org/10.1016/j.bios.2021.113112
C. Xia, Y.n Li, G. Yuan, Y. Guo, C. Yu, Immunoassay for serum amyloid A using a glassy carbon electrode modified with carboxy-polypyrrole, multiwalled carbon nanotubes, ionic liquid and chitosan, Microchimica Acta 182 (2015) 1395-1402. https://doi.org/10.1007/s00604-015-1465-0
J.-S. Lee, S.-W. Kim, E.-Y. Jang, B.-H. Kang, S.-W. Lee, G. Sai-Anand, S.-H. Lee, D.-H. Kwon, S.-W. Kang, Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry, Journal of Nanomaterials 2015 (2015) 183438. https://doi.org/10.1155/2015/183438
C. Timucin, O. Gul, O. Kutuk, H. Basaga, antibody array-based immunosensor for detecting cardiovascular disease risk markers, Journal of Immunoassay and Immunochemistry 33 (2012) 275-290. https://doi.org/10.1080/15321819.2011.638407
A. L. Pastore, G. Palleschi, L. Silvestri, D. Moschese, S. Ricci, V. Petrozza, A. Carbone, A. Di Carlo, Serum and Urine Biomarkers for Human Renal Cell Carcinoma, Disease Markers 2015 (2015) 251403. https://doi.org/10.1155/2015/251403
I. Sorić Hosman, I. Kos, L. Lamot, Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker, Frontiers in Immunology 11 (2021) 631299. https://doi.org/10.3389/fimmu.2020.631299
Kalpana, A. S. Ghrera, Electrochemical Investigation of Viral Respiratory Infection Inflammatory Biomarker Serum Amyloid A Protein by Using PtNP Modified Electrode, Chemistry Select 8 (2023) e202203532. https://doi.org/10.1002/slct.202203532
Kalpana, A. S. Ghrera, Electrochemical Investigation of Viral Respiratory Infection Inflammatory Biomarker Protein by Using AuNPs Modified Electrode, Analytical and Bioanalytical Chemistry Research 10 (2023) 289-300. https://doi.org/10.22036/ABCR.2023.367377.1849
M.-C. Tsai, P.-Y. Chen, Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tin oxide (ITO) electrodes in acidic media, Talanta 76 (2008) 533-539. https://doi.org/10.1016/j.talanta.2008.03.043
N. Tavakkoli, N. Soltani, Z. K. Tabar, M. R. Jalali, Determination of dopamine using the indium tin oxide electrode modified with direct electrodeposition of gold-platinum nanoparticles, Chemical Papers 73 (2019) 1377-1388. https://doi.org/10.1007/s11696-019-00690-4
W. Ye, H. Kou, Q. Liu, J. Yan, F. Zhou, C. Wang, Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation, International Journal of Hydrogen Energy 37 (2012) 4088-4097. https://doi.org/10.1016/j.ijhydene.2011.11.132
M. A. MacDonald, H. A. Andreas, Method for equivalent circuit determination for electrochemical impedance spectroscopy data of protein adsorption on solid surfaces, Electrochimica Acta 129 (2014) 290-299. https://doi.org/10.1016/j.electacta.2014.02.046
A. S. Ghrera, C. M. Pandey, B. D. Malhotra, Multiwalled carbon nanotube modified microfluidic-based biosensor chip for nucleic acid detection, Sensors and Actuators B: Chemical 266 (2018) 329-336. https://doi.org/10.1016/j.snb.2018.03.118
A. Sharma, Z. Matharu, G. Sumana, P. R. Solanki, C. G. Kim, B. D. Malhotra, Antibody immobilized cysteamine functionalized-gold nanoparticles for aflatoxin detection, Thin Solid Films 519 (2010) 1213-1218. https://doi.org/10.1016/j.tsf.2010.08.071
Y. G. Gupta, Kalpana, A. Sharma Ghrera, Electrochemical studies of lateral flow assay test results for procalcitonin detection, Journal of Electrochemical Science and Engineering 12 (2021) 265274. https://doi.org/10.5599/jese.1127
Y. Gupta, C. M. Pandey, A. S. Ghrera, Reduced Graphene Oxide‐Gold Nanoparticle Nanohybrid Modified Cost‐Effective Paper‐Based Biosensor for Procalcitonin Detection, ChemistrySelect 7 (2022) e202202642. https://doi.org/10.1002/slct.202202642
Y. Gupta, C. M. Pandey, A. S. Ghrera, Development of conducting cellulose paper for electroche¬mical sensing of procalcitonin, Microchimica Acta 190 (2023) 32. https://doi.org/10.1007/s00604-022-05596-9
Y. Gupta, A. S. Ghrera, Development of conducting paper-based electrochemical biosensor for procalcitonin detection, ADMET & DMPK 11 (2023) 263-275. https://doi.org/10.5599/admet.1575
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Science and Engineering Research Board
Grant numbers YSS/2015/001330