Effects of different factors on electrochemical obtaining of Re-Te-Сu alloys
DOI:
https://doi.org/10.5599/jese.895Keywords:
Rhenium alloys, ternary alloys, thin coatings, electrochemical deposition, electrolyte compositionAbstract
Based on the study of volt-ampere dependencies during electroreduction of rhenium (VII), tellurium (IV) and copper (II) ions from hydrochloric acid electrolyte on Pt electrode, the conditions of deposition of nano-coatings of ternary Re-Te-Cu alloy were determined. The influence of various factors such as amounts of individual components and total concentrations of components in the electrolyte solution, temperature, concentration of hydrochloric acid, etc., on the composition and quality of coatings was studied. It was established that with the increase of rhenium concentration in the electrolyte, as well as increase of temperature, the rhenium content in deposits increased. The morphology of films deposited on platinum substrate was studied using the scanning electron microscopy. Based on the experimental data, the following electrolyte composition (mol/l) is recommended for obtaining the semiconductor Re-Te-Cu alloy containing 40-50 wt.% Re: (6.9·10-4-6.9·10-3) KReO4 + (9·10-4-1.8·10-2) TeO2 + (6·10-4-1.2·10-2) CuCl2·2H2O +2 HCl, T = 75 °C.
Downloads
References
E. F. Speranskaya, Electrochemistry of Rhenium, Gylym, Alma-Ata, 1990. p. 253. (In Russian)
A. Naor, N. Eliaz, E. Gileadi, R. Taylor, The AMMTIAC Quarterly 5(1) (2010) 11-15 http://dx.doi.org/10.4236/jmmce.2013.15032.
A. A. Pallant, Monograph Metallurgy of Rhenium. Nauka, Moscow, 2007. p. 298. (in Russian)
A. N. Enyashin, I. Popov, Physica Status Solidi (b) 246(1) (2009) 114-118 https://doi.org/10.1002/pssb.200844254.
O. Berkh, N. Eliaz, E. Gileadi, Journal of the Electrochemical Society 161(5) (2014) D219-D226 https://doi.org/10.1149/2.038405jes.
T. G. Gray, C. M. Rudzinski, E. E. Meyer, D. G. Nocera, The Journal of Physical Chemistry A 108(16) (2004) 3238-3243 https://doi.org/10.1021/jp0358937.
A. Naor, N. Eliaz, E. Gileadi, Journal of the Electrochemical Society 157(7) (2010) D422-D427 https://doi.org/10.1149/1.3430084.
A. Ye. Novikov, A. S. Shmygalev, A. V. Isakov, Y. P. Zaykov, International Journal of Electrochemical Science 14 (2019) 1145611464 https://doi.org/10.20964/2019.12.17.
A. Chernyshev, A. Ye. Novikov, S. Shmygalev, A. V. Isakov, Y. P. Zaykov, International Journal of Electrochemical Science 14 (2019) 1145611464 https://doi.org/10.20964/2019.12.17.
E. A. Salakhova, The Journal “Inorganic Materials” 39 (2003) 99-103 https://doi.org/10.1023/A:1022178109180.
E. A. Salakhova, V. A. Majidzada, Russian Journal of Electrochemistry 47(8) (2011) 877-882 https://doi.org/10.1134/S1023193511080118.
E. A. Salakhova, A. M. Aliyev, Advances in Materials Physics and Chemistry 2(4B) (2012) 253-255 https://doi.org/10.4236/ampc.2012.24B064.
E. A. Salakhova, A. M. Aliyev, K. F. Ibraghimova, American Chemical Science Journal 4(3) (2014) 337-347 https://doi.org/10.9734/ACSJ/2014/5878.
E. A. Salakhova, D. B. Tagiyev, P. E. Kalantarova, K. F. Ibrahimova, Journal of Materials Science and Chemical Engineering 3 (2015) 82-87 http://dx.doi.org/10.4236/msce.2015.311010.
E. A. Salakhova, D. B. Tagiyev, K. F. Ibrahimova, P. E. Kalantarova, Journal of Materials Science and Chemical Engineering 3 (2015) 1-8 http://dx.doi.org/10.4236/msce.2015.310001.
E. A. Salakhova, D. B. Tagiyev, P. E. Kalantarova, K. F. Ibrahimova, International Journal of Сurrent Research 9(1) (2017) 45406-45411 http://www.journalcra.com.
S. De, W. D. Sides, T. Brusuelas, Q. Huang, Journal of Electroanalytical Chemistry 860 (2020) 113889 https://doi.org/10.1016/j.jelechem.2020.113889.
B. P. Hahn, K. J. Stevenson, Electrochimica Acta 55(22) (2010) 6917-6925 https://doi.org/10.1016/j.electacta.2010.05.001.