Poly(vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications

  • Katarina Nešović University of Belgrade, Faculty of Technology and Metallurgy, Belgrade
  • Ana Janković University of Belgrade, Faculty of Technology and Metallurgy, Belgrade
  • Tamara Radetić University of Belgrade, Faculty of Technology and Metallurgy, Belgrade
  • Aleksandra Perić-Grujić University of Belgrade, Faculty of Technology and Metallurgy, Belgrade
  • Maja Vukašinović-Sekulić University of Belgrade, Faculty of Technology and Metallurgy, Belgrade
  • Vesna Kojić University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Sremska Kamenica
  • Kyong Yop Rhee Kyung Hee University, Department of Mechanical Engineering, Yongin
  • Vesna Mišković-Stanković Department of Physical Chemistry and Electrochemistry, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade
Keywords: Electrochemical synthesis, hydrogels, release kinetics, antibacterial activity, wound dressings

Abstract

Polymer-based hydrogel materials are excellent candidates for new-generation wound dressings with improved properties, such as high sorption ability, good mechanical properties and low adhesiveness. Cross-linked hydrogel matrices also serve as excellent carriers for controlled release of antibacterial agents, such as silver nanoparticles (AgNPs), which are preferred over conventional antibiotics due to low propensity to induce bac­terial resistance. In this work, we aim to produce novel silver/poly(vinyl alco­hol)/chitosan (Ag/PVA/CHI) hydrogels for wound dressing applications. The electro­chemi­cal AgNPs syn­thesis provided facile and green method for the reduction of Ag+ ions inside the hydrogel matrices, without the need to use toxic chemical reducing agents. The forma­tion of AgNPs was confirmed using UV-visible spectroscopy, scanning and transmis­sion electron microscopy. Release kinetics was investigated in modified phosphate buffer solution at 37 °C to mimic physiological conditions. Release profiles indicated “burst release” behavior, which is beneficial for wound dressing applications. The antibacterial activity was evaluated against Staphylococcus aureus and Escherichia coli strains using disc-diffusion test, and non-toxicity of hydrogels was proved by dye-exclusion test. The obtained results confirmed strong potential of Ag/PVA/CHI hydrogels for biomedical applications.

Downloads

Download data is not yet available.

References

T. S. Stashak, E. Farstvedt, A. Othic, Clinical Techniques in Equine Practice 3 (2004) 148–163. (https://doi.org/:10.1053/j.ctep.2004.08.006).

E. Caló, V. V. Khutoryanskiy, European Polymer Journal 65 (2015) 252–267. (https://doi.org/-10.1016/j.eurpolymj.2014.11.024).

J. Sun, H. Tan, Materials 6 (2013) 1285–1309. (https://doi.org/10.3390/ma6041285).

A. Hebeish, M. Hashem, M. M. A. El-Hady, S. Sharaf, Carbohydrate Polymers 92 (2013) 407–413. (https://doi.org/10.1016/j.carbpol.2012.08.094).

R. Jayakumar, M. Prabaharan, P. T. Sudheesh Kumar, S. V. Nair, H. Tamura, Biotechnology Advances 29 (2011) 322–337. (https://doi.org/10.1016/j.biotechadv.2011.01.005).

S. Bhowmick, V. Koul, Materials Science and Engineering: C 59 (2016) 109–119. (https://doi.org/-10.1016/j.msec.2015.10.003).

Ž. Jovanović, A. Krklješ, J. Stojkovska, S. Tomić, B. Obradović, V. Mišković-Stanković, Z. Kačarević-Popović, Radiation Physics and Chemistry 80 (2011) 1208–1215. (https://doi.org/10.1016/j.rad-physchem.2011.06.005).

T. T. T. Nguyen, B. Tae, J. S. Park, Journal of Materials Science 46 (2011) 6528–6537. (https://doi.org/10.1007/s10853-011-5599-0).

A. Bal, F. E. Çepni, Ö. Çakir, I. Acar, G. Güçlü, Brazilian Journal of Chemical Engineering 32 (2015) 509–518.

Y. Zhou, Q. Dong, H. Yang, X. Liu, X. Yin, Y. Tao, Z. Bai, W. Xu, Carbohydrate Polymers 168 (2017) 220–226. (https://doi.org/10.1016/j.carbpol.2017.03.044).

D. Zhang, W. Zhou, B. Wei, X. Wang, R. Tang, J. Nie, J. Wang, Carbohydrate Polymers 125 (2015) 189–199. (https://doi.org/10.1016/j.carbpol.2015.02.034).

J. Koehler, F. P. Brandl, A. M. Goepferich, European Polymer Journal 100 (2018) 1–11. (https://doi.org/10.1016/j.eurpolymj.2017.12.046).

C. Ghobril, M. W. Grinstaff, Chemical Society Reviews 44 (2015) 1820–1835. (https://doi.org/10.1039/c4cs00332b).

B. Obradovic, J. Stojkovska, Z. Jovanovic, V. Miskovic-Stankovic, Journal of Materials Science: Materials in Medicine 23 (2012) 99–107. (https://doi.org/10.1007/s10856-011-4522-1).

K. Nešović, A. Janković, V. Kojić, M. Vukašinović-Sekulić, A. Perić-Grujić, K. Y. Rhee, V. Mišković-Stanković, Composites Part B: Engineering 154 (2018) 175–185. (https://doi.org/10.1016/j.com-positesb.2018.08.005).

M. D. Figueroa-Pizano, I. Vélaz, F. J. Peñas, P. Zavala-Rivera, A. J. Rosas-Durazo, A. D. Maldonado-Arce, M. E. Martínez-Barbosa, Carbohydrate Polymers 195 (2018) 476–485. (https://doi.org/-10.1016/j.carbpol.2018.05.004).

J. M. A. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, L. J. V Piddock, Nature Reviews Microbiology 13 (2015) 42–51. (https://doi.org/10.1038/nrmicro3380).

M. Berthet, Y. Gauthier, C. Lacroix, B. Verrier, C. Monge, Trends in Biotechnology 35 (2017) 770–784. (https://doi.org/10.1016/j.tibtech.2017.05.005).

M. Rai, A. Yadav, A. Gade, Biotechnology Advances 27 (2009) 76–83. (https://doi.org/10.1016/j.bio¬techadv.2008.09.002).

N. Duran, M. Duran, M. B. de Jesus, A. B. Seabra, W. J. Favaro, G. Nakazato, Nanomedicine: Nanotechnology, Biology, and Medicine 12 (2016) 789–799. (https://doi.org/10.1016/j.nano.2015.11.016).

Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, Journal of Biomedical Materials Research 52 (2000) 662–668. (https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3).

Z. Jovanović, A. Radosavljević, Z. Kačarević-Popović, V. Mišković-Stanković, Hemijska Industrija 65 (2011) 687–696. (https://doi.org/10.2298/hemind110915064j).

M. M. Abudabbus, I. Jevremović, A. Janković, A. Perić-Grujić, I. Matić, M. Vukašinović-Sekulić, D. Hui, K. Y. Rhee, V. Mišković-Stanković, Composites Part B: Engineering 104 (2016) 26–34. (https://doi.¬org/10.1016/j.compositesb.2016.08.024).

R. Surudžić, A. Janković, N. Bibić, M. Vukašinović-Sekulić, A. Perić-Grujić, V. Mišković-Stanković, S. J. Park, K. Y. Rhee, Composites Part B: Engineering 85 (2016) 102–112. (https://doi.org/10.1016/j.compositesb.2015.09.029).

K. Nešović, A. Janković, T. Radetić, M. Vukašinović-Sekulić, V. Kojić, L. Živković, A. Perić-Grujić, K. Y. Rhee, V. Mišković-Stanković, European Polymer Journal (2019). (https://doi.org/10.1016/j.eur-polymj.2019.109257).

K. Nešović, A. Janković, A. Perić-Grujić, M. Vukašinović-Sekulić, T. Radetić, L. Živković, S. J. Park, K. Yop Rhee, V. Mišković-Stanković, Journal of Industrial and Engineering Chemistry 77 (2019) 83–96. (https://doi.org/10.1016/j.jiec.2019.04.022).

K. Nešović, V. Kojić, K. Y. Rhee, V. Mišković-Stanković, Corrosion 73 (2017) 1437–1447. (https://doi.¬org/10.5006/2507).

C. M. Hassan, N. A. Peppas, Advances in Polymer Science 153 (2000) 37–65. (https://doi.org/-10.1007/3-540-46414-X_2).

S. R. Stauffer, N. A. Peppas, Polymer 33 (1992) 3932–3936. (https://doi.org/10.1016/0032-3861(92)90385-A).

N. A. Peppas, S. R. Stauffer, Journal of Controlled Release 16 (1991) 305–310. (https://doi.org/10.1016/0168-3659(91)90007-Z).

W. Stoks, H. Berghmans, P. Moldenaers., J. Mewis, British Polymer Journal 20 (1988) 361–369.

K. Kawanishi, M. Komatsu, T. Inoue, Polymer 28 (1987) 980–984. (https://doi.org/10.1016/0032-3861(87)90173-X).

M. M. Abudabbus, I. Jevremović, K. Nešović, A. Perić-Grujić, K. Y. Rhee, V. Mišković-Stanković, Composites Part B: Engineering 140 (2018) 99–107. (https://doi.org/10.1016/j.com¬posite-sb.2017.12.017).

G. Merga, R. Wilson, G. Lynn, B. H. Milosavljevic, D. Meisel, Journal of Physical Chemistry C 111 (2007) 12220–12226. (https://doi.org/10.1021/jp074257w).

A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Physica E: Low-Dimensional Systems and Nanostructures 27 (2005) 104–112. (https://doi.org/10.1016/j.physe.2004.10.014).

R. Desai, V. Mankad, S. K. Gupta, P. K. Jha, Nanoscience and Nanotechnology Letters 4 (2012) 30–34. (https://doi.org/10.1166/nnl.2012.1278).

A. J. Haes, R. P. Van Duyne, Journal of the American Chemical Society 124 (2002) 10596–10604. (https://doi.org/10.1021/ja020393x).

A. Slistan-Grijalva, R. Herrera-Urbina, J. F. Rivas-Silva, M. . Avalos-Borja, F. F. Castillon-Barraza, A. Posada-Amarillas, Physica E 25 (2005) 438–448. (https://doi.org/10.1016/j.physe.2004.07.010).

J. Spasojević, A. Radosavljević, J. Krstić, D. Jovanović, V. Spasojević, M. Kalagasidis-Krušić, Z. Kačarević-Popović, European Polymer Journal 69 (2015) 168–185. (https://doi.org/10.1016/j.eur-polymj.2015.06.008).

H. K. No, N. Y. Park, S. H. Lee, S. P. Meyers, International Journal of Food Microbiology 74 (2002) 65–72. (https://doi.org/10.1016/S0168-1605(01)00717-6).

Y. Wu, Y. Yang, Z. Zhang, Z. Wang, Y. Zhao, L. Sun, Advanced Powder Technology 29 (2018) 407–415. (https://doi.org/10.1016/j.apt.2017.11.028).

O. M. Bondarenko, M. Sihtmäe, J. Kuzmičiova, L. Ragelienė, A. Kahru, R. Daugelavičius, International Journal of Nanomedicine 13 (2018) 6779–6790. (https://doi.org/10.2147/IJN.S177163).

M. Seong, D. G. Lee, Current Microbiology 74 (2017) 661–670. (https://doi.org/10.1007/s00284-017-1235-9).

S. Rajeshkumar, L. V. Bharath, R. Geetha, Broad spectrum antibacterial silver nanoparticle green synthesis: Characterization, and mechanism of action, Elsevier Inc., 2019. (https://doi.org/10.1016/¬b978-0-08-102579-6.00018-6).

Y. Qing, L. Cheng, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, International Journal of Nanomedicine 13 (2018) 3311–3327. (https://doi.org/10.2147/IJN.S165125).

H. J. Phillips, Dye Exclusion Tests for Cell Viability, Academic Press, Inc., 1973. (https://doi.org/10.1016/B978-0-12-427150-0.50101-7).

G. Sjögren, G. Sletten, J. E. Dahl, Journal of Prosthetic Dentistry 84 (2000) 229–236. (https://doi.org/10.1067/mpr.2000.107227).

Published
09-03-2020
Section
7th RSE SEE & 8th Kurt Schwabe symposium Special Issue