Electrocoagulation removal of anthraquinone dye Alizarin Red S from aqueous solution using aluminum electrodes: kinetics, isothermal and thermodynamics studies
DOI:
https://doi.org/10.5599/jese.290Abstract
Electrocoagulation (EC) was used for the removal of anthraquinone dye, Alizarin Red S (ARS) from aqueous solution, the process was carried out in a batch electrochemical cell with Al electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process were investigated. Equilibrium was attained after 10 minutes at 30 oC. Pseudo-first-order, pseudo-second-order, Elovic, and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic of the electrocoagulation process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analyzed using six isotherm models: Langmuir, Freudlinch, Redlich–Peterson, Temkin, Dubinin–Radushkevich and Sips isotherms and it was found that the data fitted well with Dubinin–Radushkevich and Sips isotherm model. The study showed that the process depend on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (∆Go, ∆Ho and ∆So) indicated that the process is spontaneous and endothermic in nature.Downloads
References
] G. Crini, Bioresources Technology, 97, (2006) 1061–1085
] S. Rajgopalan Pollution Management in Industries Trivedy RK (Eds.) Environmental Publications, Karad., India (1995) p. 44
] T. Routh Journal of Environmental Protection 20(2), (1998) 115 – 123.
] D. W.Kolpin, E. T Furlong, M. T. Meyer, E. M. Thurman S. D. Zaugg, L. B. Barber and H. T. Buxton Environmental Science and Technology 36(6), (1999–2000) 1202 –1211.
] M. Ali and T. R Sreekrishnan Advance in Environmental Research. 5, (2001) 175 – 196.
] Q. Y Sun and L. Z Yang Water Research, 37, (2003) 1535 – 1544.
] R. A Shawabkeh, and M. F Tutunji, Applied Clay Science, 24(1 – 2), (2003), 111 – 120.
] G. H Lin and D. J. Brusick, Journal of Applied Toxicology 12(4), (1992), 267 – 74
] P. Zucca, C. Vinci, F. Sollai, A. Rescigno and E Sanjust, Journal of Molecular Catalysis A: Chemical 288, (2008), 97 – 102.
] P. A. Carneiro M. E Osugi., Fugivar., N. Boralle M. Furlan and M. V. Zanoni , Chemosphere 59(3) (2005), 431 – 439.
] M.Panizza, P. A. Michaud, G. Cerisola, and C. Comninellis, Electrochemistry communications 3: (2001) 336 – 339.
] Z. X. Wang, X. C. Xu, Z. Gong, and F. Y. Yang, Journal of Hazardous Materials, 78(1) (2012), 235 – 236.
] A. Aleboyeh, N. Daneshvar, and M. B. Kasiri,. Chemical Engineering Process, 47, (2008), 827 – 832.
] F. Ghanbari, M. Moradi, A. Eslami, and M. M Emamjomeh, Environmental Process. 1, (2014) 447 – 457.
] M. O. Nkiko, A. I. Adeogun, N. A A. Babarinde, and O. J. Sharaibi, Journal of Water Reuse and Desalination, 3(3), (2013) 239 – 248.
] B. Merzouk, M. Yakoubi, I. Zongo, J. P. Leclerc, G. Paternotte, S. Pontvianne and F Lapicque Desalination 275 (1–3): 181–186
] N. Daneshvar, A. Oladegaragoze and N. Djafarzadeh Journal of Hazardous Materials B129, (2006), 116 – 122.
] I. Langmuir, Journal of American Chemical Society, 40, (1918), 1361 - 1403. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum.
] H. M. F. Freundlich, Journal of Physical Chemistry 57 (1906) 385–471
] M. I. Tempkin, and V. Pyzhev, Acta Physica Chimca. USSR 12 (1940) 327–356.
] M. M. Dubinin, and L. V Radushkevich, Proceedings of the Academy of Sciences, Physical Chemistry Section, U.S.S.R. 55, (1947) 331 – 333.
] R. Sips, Journal of Chemical Physics, 16, (1948), 490 – 495.
] O. Redlich, and D. L. Peterson, Journal of Physical Chemistry, 63, (1959), 1024 – 1026.
] T. S Aniruldhan, and P. G. Radhakrishnan, Journal of Chemical Thermodynamics. 40, (2008): 702 – 709.
] Z. Chen, W. Ma, and M.Han, Journal of Hazardous Material 155,(2008), 327 – 333.
] O. S. Bello, A. I. Adeogun, J. C. Ajaelu and E. O. Fehintola, Chemistry and Ecology. 24, (2008), 285 – 295.
] A. I. Adeogun, S. O. Kareem, J. B Durosanya and. S. E Balogun, Journal of Microbiology Biothcechnology and Food Science 1 (2012), 1221 – 1234.
] W. J. Weber, Jr., and J. C. Morris, Journal of the Sanitary Engineering Division-ASCE, 89, (1963), 31 - 59.
] P. K. Malik, Journal Hazardous Material 113 (2004), 81 – 88.
] S. Kundu, and A. K. Gupta, Colloidal Surface. A273, 121-128. (2006).
] A. I. Adeogun, A. E. Ofudje, M. A Idowu, and S. O. Kareem, BioResources. 6, (2011), 4117 – 4134.
] J. Zeldowitsch, Acta Physicochemical URSS, 1, (1934) 364 – 449.
] A. B. Perez-Marin, V. Meseguer-Zapata, , J. F. Ortuño, M. Aguilar, J. Sáes, and M Lloréns, Journal of Hazardous Materials 139, (2007) 122 – 131.
] N. Daneshvar, D. Salari, and A. R Khataee,: Journal of Photochemistry and Photobiology A 157 (2003), 111 – 116.
] Mollah, M. Y. A. Morkovsky, P. Gomes, J. A. G. Kesmez, MParga, J. Cocke, D. L. Journal of Hazardous Materials B 114 (2004) 199–210.
] M. Bayramoglu, M. Kobya, O. Can, and T. M Sozbir, Separation Purification Technology 37 (2004) 117 – 125.
] M. Kobya, E.Demirbas, A. Dedeli, and M. T. Sensoy, Journal Hazardous Material 173, (2010), 326 – 334.
] P. Saha, and S. K. Sanyal, Desalination, 259, (2010), 131 – 139.
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.