CuO-based nanocomposite: synthesis, characterization, and evaluation of the corrosion inhibition effectiveness for mild steel in HCl
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2715Keywords:
Copper oxide nanoparticles, low carbon steel, corrosion protection, arginine-tyrosine functionalizationAbstract
Mitigating mild steel (MS) deterioration within acidic environments is critical for minimizing economic losses. CuO nanoparticles/arginine/tyrosine (CAT) was synthesized by modifying CuO nanoparticles with a 10.0 % solution of each arginine and tyrosine, through the use of ultrasonication. The characterization of CAT was conducted utilizing X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, transmission electron microscopy and Brunauer-Emmett-Teller analysis. To investigate MS corrosion in 1.0 M HCl, both potentiodynamic polarization and electrochemical impedance spectroscopy techniques were employed. The XRD results indicated the presence of distinct peaks, confirming the crystalline structure of CAT, with an average crystallite size equal to 39.5 nm. The FTIR band observed within the range of 580-610 cm-1 is likely attributable to Cu-O stretching vibrations. TEM imaging demonstrated that CAT comprises spherical and well-dispersed particles. Furthermore, the surface area of CAT was determined to be 221 m² g-1, with a pore diameter of 2.137 nm, indicating its mesoporous nature. The variation in corrosion potential was below 85 mV, indicating that CAT functioned as a mixed-type inhibitor. The charge transfer resistance rose from 7.3 W cm2 without CAT to 226.8 W cm2 at 1000 ppm of CAT, demonstrating the potential of CAT as an inhibitor for MS corrosion in HCl. CuO, arginine, and tyrosine exhibit HOMO and LUMO properties that could play a significant role in corrosion inhibition.
Downloads
References
[1] A. Anderez, F. J. Alguacil, F. A. López. Acid pickling of carbon steel, Revista de Metalurgia 58 (2022) e226. https://doi.org/10.3989/revmetalm.226
[2] M. C. Emesiani, V. C. Umegbolu, M. M. Mchihi. Corrosion inhibitory attributes of mixture of codiaeum variegatum and ficus benjamina for mild steel in hydrochloric acid medium, Fudma Journal of Sciences 8 (2024) 258-263. https://doi.org/10.33003/fjs-2024-0805-2677
[3] A. Toghan, O. K. Alduaij, N. Alqarni, E. M. Masoud, H. Alhussain, A. M. Mostafa, A. A. Farag, A. Fawzy. Mathematical, electrochemical, spectroscopic and microscopic monitoring of the adsorption effect of expired drugs on zinc corrosion in 3.5% NaCl solution, Results in Chemistry 13 (2025) 102006. https://doi.org/10.1016/j.rechem.2024.102006
[4] A. A. Farag, A. Toghan, Unravelling the adsorption and anti-corrosion potency of newly synthesized thiazole Schiff bases on C-steel in 1 M HCl: Computational and experimental implementations, Results in Engineering 25 (2025) 104504. https://doi.org/10.1016/j.rineng.2025.104504
[5] D-I. Răuță, E. Matei, S-M. Avramescu, Recent Development of Corrosion Inhibitors: Types, Mechanisms, Electrochemical Behavior, Efficiency, and Environmental Impact, Technologies 13 (2025) 103. https://doi.org/10.3390/technologies13030103
[6] D.T. Oyekunle, O. Agboola, A.O. Ayeni, Corrosion inhibitors as building evidence for mild steel: a review, Journal of Physics: Conference Series 1378 (2019) 032046. https://doi.org/10.1088/1742-6596/1378/3/032046
[7] S. Mahvidia, M. Gharagozloua, M. Mahdavianb, S. Naghibic, Potency of ZnFe2O4 Nanoparticles as Corrosion Inhibitor for Stainless Steel; the Pigment Extract Study. Materials Research 20 (2017) 1492-1502. http://dx.doi.org/10.1590/1980-5373-MR-2016-0772
[8] M. L. Zheludkevich, R. Serra, M. F. Montemor, G.S. Ferreira, Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors, Electrochemistry Communications 7 (2005) 836-840. https://doi.org/10.1016/j.elecom.2005.04.039
[9] E. Ituen, O. Akaranta, A. James, Elephant grass biomass extract as corrosion inhibitor for mild steel in acidic medium, Journal of Material Science and Environmental Science 8 (2017) 1498-1507. http://www.jmaterenvironsci.com
[10] N. W. Odozi, A. S. Adetoba, M. M. Mchihi, A. N. Akpaetok, Synsepalum dulcificum leaves extract as green inhibitor for mild steel corrosion in hydrochloric acid, ChemSearch Journal 12 (2021) 47-54. http://www.ajol.info/index.php/csj
[11] J. O. Madu, C. Ifeakachukwu, U. Okorodudu, F.V. Adams, I.V. Joseph, Corrosion Inhibition Efficiency of Terminalia Catappa Leaves Extracts on Stainless Steel in Hydrochloric Acid, Journal of Physics: Conference Series 1378 (2019) 022092. https://doi.org/10.1088/1742-6596/1378/2/022092
[12] A. Ezzat, S. M. Motaal, A. S. Ahmed, H. B. Sallam, A. El-Hossiany, A. S. Fouda. Corrosion Inhibition of Carbon Steel in 2.0M HCl Solution Using Novel Extract (Pulicaria undulate). Biointerface Research in Applied Chemistry 12 (2022) 6415-6427. https://doi.org/10.33263/BRIAC125.64156427
[13] M.M. Mchihi, N.W. Odozi, A.O. Nurudeen, M.C. Emesiani, B. O. Seriki. Assessment of Helianthus tuberosus leaves extract as eco-friendly corrosion inhibitor for Aluminum in sodium hydroxide: Insights from electrochemical, gravimetry and computational consideration, Moroccan Journal of Chemistry 12 (2024) 1462-1483. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i4.49160
[14] R. Aslam, M. Mobin, M. Shoeb, J. Aslam. Novel ZrO2‑glycine nanocomposite as eco‑friendly high temperature corrosion inhibitor for mild steel in hydrochloric acid solution, Scientific Reports 12 (2022) 9274. https://doi.org/10.1038/s41598-022-13359-y
[15] P. Burhagohain, G. Sharma. A Descriptive study on the use of nanomaterials as corrosion inhibitors in oil and gas industry, International Journal of Scientific & Technology Research 8 (2019) 3999-4002.
[16] M. M. Mchihi, A. M. Olatunde, N. W. Odozi. Ficus sur mediated synthesis of mesoporous ZnO nanoparticles and novel ZnO/Arginine/Tyrosine nanocomposite as eco friendly corrosion inhibitors for mild steel in hydrochloric acid medium, Moroccan Journal of Chemistry 12 (2024)1122-1152. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i3.42782
[17] L. Hamadi, S. Mansouri, K. Oulmi, A. Kareche, The use of amino acids as corrosion inhibitors for metals: A review, Egyptian Journal of Petroleum 27 (2018) 1157-1165. https://doi.org/10.1016/j.ejpe.2018.04.004
[18] B. E. Ibrahimi, A. Jmiai, L. Bazzi, S. E. Issami, Amino acids and their derivatives as corrosion inhibitors for metals and alloys, Arabian Journal of Chemistry 13 (2020) 740-771. http://dx.doi.org/10.1016/j.arabjc.2017.07.013.
[19] M. M. Khowdiary, N. A. Taha, N. M. Saleh, A. A. Elhenawy, Synthesis of Novel Nano-Sulfonamide Metal-Based Corrosion Inhibitor Surfactants, Materials 15 (2022) 1146. https://doi.org/10.3390/ma15031146
[20] F. Chioma, N. W. Odozi, M. M. Mchihi, M. A. Olatunde, Synthesis, spectroscopic, and density functional theory studies of the corrosion inhibitive behaviour of n-(1,4-dihydro-1,4-dioxonaphthalene-3-yl)pyrazine-2-carboxamide chelator-ligand, Global Journal of Pure and Applied Sciences 28 (2022) 39-50. https://dx.doi.org/10.4314/gjpas.v28i1.6
[21] S. H. Alrefaee, K. Y. Rhee, C. Verma, M. A. Quraishi, E. E. Ebenso, Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements, Journal of Molecular Liquids 321 (2021) 114666. https://doi.org/10.1016/j.molliq.2020.114666
[22] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Materials Advances 2 (2022) 1821-1871. https://doi.org/10.1039/d0ma00807a
[23] N. W. Odozi, M. M. Mchihi, M. A. Olatunde. Review of Recent Advances in Plant-Mediated Synthesis and Applications of 3d6 - 3d10 Metal Oxide Nanoparticles and their Composites, Dutse Journal of Pure and Applied Sciences 9(4b) (2023) 91-120. https://www.ajol.info/index.php/dujopas/article/view/262332
[24] D. R. Mohammedali, H. I. Salman, M. N. Bahjat, E. S. Abood, Synthesis of new Corrosion Inhibitor from Nano-Polymer and study its adsorption on carbon steel at different Temperatures, Egyptian Journal of Chemistry 65 (2022) 691-705. https://dx.doi.org/10.21608/EJCHEM.2022.139171.6113
[25] A. Kasprzhitskii, G. Lazorenko, T. Nazdracheva, V. Yavna, Comparative computational study of l-amino acids as green corrosion inhibitors for mild steel, Computation 9 (2021) 1. https://dx.doi.org/10.3390/computation9010001
[26] A. A. Barzinjy, H. H. Azeez, Green synthesis and characterisation of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt, Springer Nature Journal 2 (2020) 991. https://doi.org/10.1007/s42452-020-2813-1
[27] J.M. Falcón, F.F. Batista, I.V. Aoki, Encapsulation of dodecylamine corrosion inhibitor on silica nanoparticles, Electrochimica Acta 124 (2014) 109-118. https://doi.org/10.1016/j.electacta.2013.06.114
[28] M. M. Mchihi, N. W. Odozi, S. A. Gbolahan, Electrochemical investigation of the inhibitory effect of zinc oxide nanoparticles/tenofovir disoproxil fumarate nanocomposite on mild steel corrosion in 1 M hydrochloric acid, Analytical and Bioanalytical Electrochemistry 16 (2024) 559-567. https://doi.org/10.22034/ABEC.2024.714079
[29] H. Hamani, D. Daoud, S. Benabid, T. Douadi, M. Al-Noaimi, Investigation on corrosion inhibition and adsorption mechanism of azomethine derivatives at mild steel/0.5M H2SO4 interface: Gravimetric, electrochemical, SEM and EDX studies. Journal of the Indian Chemical Society 99 (2022) 100330. https://doi.org/10.1016/j.jics.2021.100330
[30] Y. Wang, Y. Chang, L. Yin, Y. Xue, Z. Li, C. Xue, A Novel Technological Process of Extracting L-Tyrosine with Low Fluorine Content from Defatted Antarctic Krill (Euphausia superba) By-product by Enzymatic Hydrolysis. Food and Bioprocess Technology 9 (2015) 621-627. https://doi.org/10.1007/s11947-015-1658-x
[31] S. N. Dalhatu, K. A. Modu, A. A. Mahmoud, Z. U. Zango, A. B. Umar, F. Usman, J. O. Dennis, A. Alsadig, K. H. Ibnaouf, O. A. Aldaghri, L-Arginine Grafted Chitosan as Corrosion Inhibitor for Mild Steel Protection, Polymers 15 (2023) 398. https://doi.org/10.3390/polym15020398
[32] W. W. Andualem, F. K. Sabir, E. T. Mohammed, H. B. Hadgu, A. G. Bedasa, Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity, Journal of Nanotechnology 2020 (2020) 2932434. https://doi.org/10.1155/2020/2932434
[33] S. N. Begum, A. Esakkiraja, S. M. Asan, M. Muthumari, G. V. Raj, Green Synthesis of Copper Oxide Nanoparticles Using Catharanthus Roseus Leaf Extract and Their Antibacterial Activity, International Journal of Scientific Research in Multidisciplinary Studies 5 (2019) 21-27.
[34] K. S. Devi, A. R. Singh, D. Velmurugan, D. Devi, D. S. Lourembam, N. R. Singh, Green Synthesis of Copper Oxide Nanoparticles Using Coix lacryma jobi Leaves Extract and Screening of its Potential Anticancer Activities, Journal of Pharmaceutical Research International 33 (2021) 128-139. https://doi.org/10.9734/JPRI/2021/v33i52A33566
[35] M. A. Ismail, K. K. Taha, A. Modwi, L. Khezami, ZnO Nanoparticles: Surface and X-Ray Profile Analysis, Journal of Ovonic Research 14 (2018) 381-393.
[36] N. A. Jadhav, P. K. Singh, H. W. Rhee, B. Bhattacharya, Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells, Nanoscale Research Letter 9 (2014) 575. http://www.nanoscalereslett.com/content/9/1/575
[37] S. Fakhari, M. Jamzad, K. H. Fard, Green synthesis of zinc oxide nanoparticles: a comparison. Green Chemistry Letters and Reviews 12 (2019) 19-24. https://doi.org/10.1080/17518253.2018.1547925
[38] S. Kumar, S. B. Rai, Spectroscopic studies of L-Arginine molecule, Indian Journal of Pure and Applied Physics 48 (2009) 251-255.
[39] P. S. Umoren, D. Kavaz, S. A. Umoren, Corrosion Inhibition Evaluation of Chitosan-CuO Nanocomposite for Carbon Steel in 5% HCl Solution and Effect of KI Addition, Sustainability 14 (2022) 7981. https://doi.org/10.3390/su14137981
[40] E. Ituen, E. Ekemini, L. Yuanhuaa, R. Lia, A. Singh, Mitigation of microbial biodeterioration and acid corrosion of pipework steel using Citrus reticulata peels extract mediated copper nanoparticles composite, International Biodeterioration & Biodegradation 149 (2020) 1049352. https://doi.org/10.1016/j.ibiod.2020.104935
[41] M. Allaoui, O. Rahim, L. Sekhri, Electrochemical Study on Corrosion Inhibition of Iron in acidic medium by Moringa oleifera extract, Oriental Journal of Chemistry 33 (2017) 637-646. http://dx.doi.org/10.13005/ojc/330211
[42] R. A. Hameed, M. Faride, M. Othman, B. Huwaimel, S. Al-Mhyawi, A. Shamroukh, F. Alshammary, E. Aljuhani, M. Abdallah, Green synthesis of zinc sulfide nanoparticles-organic heterocyclic polyol system as eco-friendly anti corrosion and anti-bacterial corrosion inhibitor for steel in acidic environment, Green Chemistry Letters and Reviews 15 (2022) 847-862. https://doi.org/10.1080/17518253.2022.2141585
[43] N. W. Odozi, R. Saheed, M. M. Mchihi, Application of peperomia pellucida leaves extract as a green corrosion inhibitor for mild steel in 1.0 M hydrochloric acid solution, ChemSearch Journal 10 (2019) 88-93. http://www.ajol.info/index.php/csj
[44] N. W. Odozi, M. C. Emesiani, C. D. Charles, B. O. Seriki, M. M. Mchihi, Electrochemical studies of the corrosion inhibitory potential of Annona muricata leaves extract on aluminum in hydrochloric acid medium, FUDMA Journal of Sciences 8 (2024) 395-401. https://doi.org/10.33003/fjs-2024-0803-2460
[45] M. A. Darweesh, S. M. Emam, A. M. Wahba, M. I. Ayad, M. N. El-Nahass, A. S. Abd-Elhamied, W. A. Hammad, Onion peel extract/copper oxide nanoparticles as corrosion inhibitors for carbon steel in hydrochloric acid: Extraction, characterization, electrochemical study, and theoretical explorations, Results in Chemistry 9 (2024) 101626. https://doi.org/10.1016/j.rechem.2024.101626
[46] M. M. Mchihi, M. C. Emesiani, J. I. Babawumi, Inhibitory Potentials of Leaf Extract of Justicia Schimperi for Mild Steel Corrosion in Hydrochloric Acid Medium: Gravimetric, Microscopic and Spectroscopic Studies, Asian Research Journal of Current Science 5 (2023) 184-192. https://www.jofscience.com/index.php/ARJOCS/article/view/19
[47] K. Tarfaoui, N. Brhadda, M. Ouakki, M. Galai, E. Ech chihbi, K. Atfaoui, M. Khattabi, M. Nehiri, R. Lachhab, M. Ebn Touhami, M. Ouhssine, Natural Elettaria cardamomum Essential Oil as a Sustainable and a Green Corrosion Inhibitor for Mild Steel in 1.0 M HCl Solution: Electrochemical and Computational Methods, Journal of Bio- and Tribo-Corrosion 7 (2021) 131. https://doi.org/10.1007/s40735-021-00567-8
[48] N. I. Oktavianti, G. R. Anindika, A. L. Ivansyah, Y. Kusumawati. Theoretical study of nickel-doped zinc oxide interaction with methylene blue and methyl orange using DFT methods. Materials Research Express 9 (2022) 125505. https://doi.org/10.1088/2053-1591/aca747
[49] S. Kaya, B. Tüzün, C. Kaya, I. B. Obot, Determination of Corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study, Journal of the Taiwan Institute of Chemical Engineers 58 (2016) 528-535. https://doi.org/10.1016/j.jtice.2015.06.009
[50] L. Chen, D. Lu, Y. Zhang, Organic Compounds as Corrosion Inhibitors for Carbon Steel in HCl Solution: A Comprehensive Review, Materials 15 (2022) 2023. https://doi.org/10.3390/ma15062023
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Msenhemba Moses Mchihi, Abimbola Modupe Olatunde, Nnenna Winifred Odozi

This work is licensed under a Creative Commons Attribution 4.0 International License.