Improved performance of nitrate extended gate field effect transistor sensor through deposition of polymer layer at various withdrawal speeds using dip coating method
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2670Keywords:
Electrochemical sensor, potentiometry, zinc oxide/polyaniline bilayer, surface wettability, nitrate monitoringAbstract
In this study, a nitrate Extended Gate Field Effect Transistor (EGFET) sensor has been deposited with polyaniline (PANI) using a dip coating method by varying the withdrawal speed parameter at a range of 1 to 7 mm/s to improve the detection and stability of the sensor that uses zinc oxide (ZnO) as a sensing material, which lacks sensitivity and stability in detecting nitrate. The sensor was characterized by analysing its surface morphology, light absorption, and wettability level. The sensitivity and linearity of the sensors were evaluated using EGFET measurements, which showed that the threshold voltage changes when the sensor interacts with the analyte. The results obtained by comparing ZnO/indium tin oxide film and PANI/ZnO film show that PANI helps to improve sensor performance, and the best parameter setup to deposit PANI was at 2 mm/s withdrawal speed, resulting in a super-Nernstian response with a high sensitivity of 78.90 mV/dec and close to 1 linearity. The film showed excellent long-term stability in detecting nitrate in a 50-ppm nitrate solution, with the lowest drift rate at 0.1278 V/h. The dip coating method, using a 2 mm/s withdrawal speed, appears to be effective for fabricating PANI as a polymer layer for nitrate sensors.
Downloads
References
M. E. E. Alahi, S. C. Mukhopadhyay, Detection methods of nitrate in water, Sensors and Actuators A 280 (2018) 210-221. https://doi.org/10.1016/j.sna.2018.07.026
J. Dong, J. Tang, G. Wu, Y. Xin, R. Li, Y. Li, Effective correction of dissolved organic carbon interference in nitrate detection using ultraviolet spectroscopy combined with the equivalent concentration offset method, RSC Advances 14 (2024) 53705379. https://doi.org/10.1039/d3ra08000e
A. N. Mallya, P. C. Ramamurthy, Design and Fabrication of a Highly Stable Polymer Carbon Nanotube Nanocomposite Chemiresistive Sensor for Nitrate Ion Detection in Water, ECS Journal of Solid State Science and Technology 7 (2018) Q3054Q3064. https://doi.org/10.1149/2.0081807jss
X. Chen, H. Pu, Z. Fu, X. Sui, J. Chang, J. Chen, S. Mao, Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors, Environmental Science: Nano 5 (2018) 19901999. https://doi.org/10.1039/c8en00588e
R. N. Dean, E. A. Guertal and A. F. Newby, A Low-Cost Environmental Nitrate Sensor, 2020 IEEE Green Technologies Conference(GreenTech), Oklahoma City, OK, USA, 2020, pp. 165-170. https://doi.org/10.1109/GreenTech46478.2020.9289723
R. K. Singh, Electrochemical Sensors for Nitrate and Nitrite Detection : A Brief Review, International Journal of All Research Education and Scientific Methods 11 (2023) 8-12. https://doi.org/10.56025/IJARESM.2023.11623242
Z. Ren, Y. Li, A Miniaturized Electrochemical Nitrate Sensor and the Design for Its Automatic Operation Based on Distributed Model, Mathematical Problems in Engineering 2022 (2022) 6028110. https://doi.org/10.1155/2022/6028110
F. R. Simões, M. G. Xavier, Electrochemical Sensors, Nanoscience and its Applications, Micro and Nano Technologies (2017) 155-178. https://doi.org/10.1016/B978-0-323-49780-0.00006-5
C. L. Baumbauer, P. J. Goodrich, M. E. Payne, T. Anthony, C. Beckstoffer, A. Toor, W. Silver, A. C. Arias, Printed Potentiometric Nitrate Sensors for Use in Soil, Sensors 22 (2022) 4095. https://doi.org/10.3390/s22114095
A. B. Rosli, Z. Awang, S. S. Shariffudin, S. H. Herman, Fabrication of integrated solid state electrode for extended gate-FET pH sensor, Materials Research Express 6 (2019) 016419. https://doi.org/10.1088/2053-1591/aae739
S. B. Hashim, A. B. Rosli, Z. Zulkifli, W. Fazlida, H. Abdullah, S. H. Herman, Effect of Polymer Types on Metal Oxide Substrates as an EGFET Sensor-Based Nitrate Sensing Layers, Science Letter 16 (2022) 73-83. https://doi.org/10.24191/sl.v16i2.16942
S. A. Pullano, C. D. Critello, I. Mahbub, N. T. Tasneem, S. Shamsir, S. K. Islam, M. Greco, A. S. Fiorillo, EGFET-based sensors for bioanalytical applications, Sensors (Switzerland) 18 (2018) 4042. https://doi.org/10.3390/s18114042
S. Sheibani, L. Capua, S. Kamaei, S. S. A. Akbari, J. Zhang, H. Guerin, A.M. Ionescu, Extended gate field-effect-transistor for sensing cortisol stress hormone, Communication Materials 2 (2021) 10. https://doi.org/10.1038/s43246-020-00114-x
A. B. Rosli, S. B. Hashim, R. A. Rahman, S. H. Herman, W. F. H. Abdullah, Z. Zulkifli, Correlation of ZnO Surface Morphology and Sensing Performance of EGFET Nitrate Sensor, Journal of Mechanical Engineering SI 11 (2022) 65-80. https://doi.org/10.24191/jmeche.v11i1.23586
R. B. M. Cross, M. M. De Souza, E. M. Sankara Narayanan, A low temperature combination method for the production of ZnO nanowires, Nanotechnology 16 (2005) 2188-2192. https://doi.org/10.1088/0957-4484/16/10/035
S. Chaudhary, A. Umar, K.K. Bhasin, S. Baskoutas, Chemical sensing applications of ZnO nanomaterials, Materials (Basel) 11 (2018) 287. https://doi.org/10.3390/ma11020287
F. Zhou, Y. Li, Y. Tang, F. Gao, W. Jing, Y. Du, F. Han, A novel flexible non-enzymatic electrochemical glucose sensor of excellent performance with ZnO nanorods modified on stainless steel wire sieve and stimulated via UV irradiation, Ceramics International 48 (2022) 14395-14405. https://doi.org/10.1016/j.ceramint.2022.01.332
S. Talam, S. R. Karumuri, N. Gunnam, Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles, ISRN Nanotechnology 2012 (2012) 372505. https://doi.org/10.5402/2012/372505
P. Li, S. Yu, H. Zhang, Preparation and performance analysis of Ag/ZnO humidity sensor, Sensors (Switzerland) 21 (2021) 857. https://doi.org/10.3390/s21030857
S. P. Amouzesh, A. A. Khodadadi, Y. Mortazavi, S. Saris, M. Asgari, MIL-100(Fe)/ZnO nano-com¬posite sensors: An enhanced ammonia selectivity and low operating temperature, Sensors and Actuators B 399 (2024) 134791. https://doi.org/10.1016/j.snb.2023.134791
V. S. Bhati, M. Hojamberdiev, M. Kumar, Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review, Energy Reports 6 (2020) 46-62. https://doi.org/10.1016/j.egyr.2019.08.070
Y. M. Sung, A. K. Akbar, S. Biring, C. F. Li, Y. C. Huang, S. W. Liu, The effect of ZnO preparation on the performance of inverted polymer solar cells under one sun and indoor light, Journal Materials Chemistry C 9 (2021) 1196-1204. https://doi.org/10.1039/D0TC04208K
T. D. Kusworo, N. Aryanti, F. Dalanta, Effects of incorporating ZnO on characteristic, performance, and antifouling potential of PSf membrane for PRW treatment, IOP Conference Series: Materials Science and Engineering 1053 (2021) 012134. https://doi.org/10.1088/1757-899x/1053/1/012134
Y. Liu, X. Cui, W. Yan, J. Wang, J. Su, L. Jin, A molecular level based parametric study of transport behavior in different polymer composite membranes for water vapor separation, Applied Energy 326 (2022) 120007. https://doi.org/10.1016/j.apenergy.2022.120007
H. A. Khizir, T. A. H. Abbas, Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EGFET) pH sensing applications, Sensors and Actuators A: Physical 333 (2022) 113231. https://doi.org/10.1016/j.sna.2021.113231
M. N. Naseer, K. Dutta, A. A. Zaidi, M. Asif, A. Alqahtany, N. A. Aldossary, R. Jamil, S. H. Alyami, J. Jaafar, Research Trends in the Use of Polyaniline Membrane for Water Treatment Applications: A Scientometric Analysis, Membranes (Basel) 12 (2022) 777. https://doi.org/10.3390/membranes12080777
N. S. Kamarozaman, N. Zainal, A. B. Rosli, M. A. Zulkefle, N. R. Nik Him, W. F. H. Abdullah, S. H. Herman, Z. Zulkifli, Highly Sensitive and Selective Sol-Gel Spin-Coated Composite TiO2-PANI Thin Films for EGFET-pH Sensor, Gels 8 (2022) 690. https://doi.org/10.3390/gels8110690
S. Jebali, M. Vayer, K. Belal, F. Mahut, C. Sinturel, Dip-coating deposition of nanocomposite thin films based on water-soluble polymer and silica nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 680 (2024) 132688. https://doi.org/10.1016/j.colsurfa.2023.132688
M. Niazmand, A. Maghsoudipour, M. Alizadeh, Z. Khakpour, A. Kariminejad, Effect of dip coating parameters on microstructure and thickness of 8YSZ electrolyte coated on NiO-YSZ by sol-gel process for SOFCs applications, Ceramics International 48 (2022) 16091-16098. https://doi.org/10.1016/j.ceramint.2022.02.155
S. F. A. Samat, M. S. P. Sarah, M. F. M. Idros, M. Rusop, Optimizing the withdrawal speed using dip coating for optical sensor, AIP Conference Proceedings 1963 (2018) 020018. https://doi.org/10.1063/1.5036864
M. Y. Tababouchet, A. Sakri, C. Bouremel, A. Boutarfaia, Synthesis of Polyaniline-Zinc Oxide Composites: Assessment of Structural, Morphological, and Electrical Properties, Annales de Chimie - Science des Matériaux 47 (2023) 399-404. https://doi.org/10.18280/acsm.470606
Alamgeer, M. Tahir, M. R. Sarker, S. Ali, Ibraheem, S. Hussian, S. Ali, M. Imran Khan, D. N. Khan, R. Ali, S. Mohd Said, Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications, Polymers (Basel) 15 (2023) 363. https://doi.org/10.3390/polym15020363
A. Hosseini, K. Içli, M. Özenbaş, Erçelebi, Fabrication and characterization of spin-coated TiO2 films, Energy Procedia 60 (2014) 191-198. https://doi.org/10.1016/j.egypro.2014.12.332
J. Bile, M. A. Bolzinger, J. P. Valour, H. Fessi, Y. Chevalier, Antimicrobial films containing microparticles for the enhancement of long-term sustained release, Drug Development and Industrial Pharmacy 42 (2016) 818-824. https://doi.org/10.3109/03639045.2015.1081237
G. Agrawal, Y. S. Negi, S. Pradhan, M. Dash, S. K. Samal, Wettability and contact angle of polymeric biomaterials, Characterization of Polymeric Biomaterials (2017) 57-81. https://doi.org/10.1016/B978-0-08-100737-2.00003-0
C. W. Lee, S. J. Lee, M. Kim, Y. Kyung, K. Eom, Capacitive humidity sensor tag monitoring system using the Capacitive to Voltage Converter (CVC), Communications in Computer and Information Science 195 (2011) 181-189. https://doi.org/10.1007/978-3-642-24267-0_22
S. Sultana, J. Matsui, M. Mitsuishi, T. Miyashita, Thickness dependence of surface wettability change by photoreactive polymer nanosheets, Polymer Journal 40 (2008) 953-957. https://doi.org/10.1295/polymj.PJ2008088
H. Chen, H. Fan, N. Su, R. Hong, X. Lu, Highly hydrophobic polyaniline nanoparticles for anti-corrosion epoxy coatings, Chemical Engineering Journal 420 (2021) 130540. https://doi.org/10.1016/j.cej.2021.130540
T. V. Shishkanova, P. Matějka, V. Král, I. Šeděnková, M. Trchová, J. Stejskal, Optimization of the thickness of a conducting polymer, polyaniline, deposited on the surface of poly(vinyl chloride) membranes: A new way to improve their potentiometric response, Analytica Chimica Acta 624 (2008) 238-246. https://doi.org/10.1016/j.aca.2008.07.001
Z. Rasool, S. I. Amin, L. Majeed, I. Bashir, A. Seraj, S. Anand, Simulation-based Study of Super-Nernstian pH Sensor Based on Doping-less Tunnel-field Effect Transistor, Silicon 15 (2023) 4285-4296. https://doi.org/10.1007/s12633-023-02329-2
Y. Tang, L. Zhong, W. Wang, Y. He, T. Han, L. Xu, X. Mo, Z. Liu, Y. Ma, Y. Bao, S. Gan, L. Niu, Recent Advances in Wearable Potentiometric pH Sensors, Membranes (Basel) 12 (2022) 504. https://doi.org/10.3390/membranes12050504
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Electrochemical Science and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Funding data
-
Ministry of Higher Education, Malaysia
Grant numbers FRGS/1/ 2022/TK07/UITM/02/38 -
Universiti Teknologi MARA