Exploring the inhibitory performance of expired moxifloxacin and norfloxacin on copper corrosion in saline environment

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2646

Keywords:

Metal corrosion, salty environment, fluoroquinolone antibiotics, anti-corrosion properties, adsorption

Abstract

The reuse of expired drugs has become a challenge to maintain environmental clean-liness and achieve economic benefit. In this report, two expired drugs, moxifloxacin and norfloxacin, were used as inhibitors for copper corrosion in 3.5 % NaCl solution at different temperatures using several experimental approaches including chemical, electrochemical and spectroscopic techniques. The interaction of these two molecules on the copper surface was also inspected using different adsorption models. Using a dose of 500 mg L-1 of these drugs at 298 K, maximum inhibition efficiencies (IE) of 88.7 and 85.2 % were estimated from the potentiodynamic polarization technique for Mox and Nor, respectively., confirming that they can be considered as promising and effective inhibitors. The IE values were enhanced with increasing drugs doses and reduced with rising temperature. The higher IE is due to the strong adsorption of these molecules on the copper surface and such adsorption is physical in nature and follows the Langmuir adsorption isotherm. This is due to their unique chemical structures as they contain a number of functional groups. Polarization experiments confirmed that the drugs were tuned to behave as mixed-type inhibitors with an anodic predominance. All thermos¬dynamic and kinetic parameters were calculated and discussed in details, and the inhibition mechanism is proposed. All experimental results obtained by different techniques were in agreement with each other.

Downloads

Download data is not yet available.

References

E. Touzé, C. Cougnon, Study of the air-formed oxide layer at the copper surface and its impact on the copper corrosion in an aggressive chloride medium, Electrochimica Acta 262 (2018) 206-213. https://doi.org/10.1016/j.electacta.2017.12.187

K. F. Khaled, Guanidine derivative as a new corrosion inhibitor for copper in 3 % NaCl solution, Materials Chemistry and Physics 112(2008) 104-111. https://doi.org/10.1016/j.matchemphys.2008.05.052

A. Fawzy, A. Toghan, O. K. Alduaij, N. Alqarni, A. M. Eldesoky, A. A. Farag, Electrochemical, spectroscopic, kinetic and surface analysis of the inhibitory performance of Alcian blue dye for copper corrosion in sulfuric acid solution, International Journal of Electrochemical Science 19 (2024)100429. https://doi.org/10.1016/j.ijoes.2023.100429

Y. Qiang, S. Zhang, L. Guo, X. Zheng, B. Xiang, and S. Chen, Experimental and theoretical studies of four allyl imidazolium-based ionic liquids as green inhibitors for copper corrosion in sulfuric acid, Corrosion Science 119 (2017) 68-78. https://doi.org/10.1016/j.corsci.2017.02.021

D. Kumar, N. Jain, V. Jain, B. Rai, Amino acids as copper corrosion inhibitors: A density functional theory approach, Applied Surface Science 514 (2020) 145905. https://doi.org/10.1016/j.apsusc.2020.145905

A. Fawzy, O. K. Alduaij, A. Al-Bahir, D. A. Alshammari, N. Alqarni, A. M. Eldesoky, A. A. Farag, A. Toghan, A comparative study of pyridine and pyrimidine derivatives based formamidine for copper corrosion inhibition in nitric acid: Experimental and computational exploration, International Journal of Electrochemical Science 19 (2024) 100403. https://doi.org/10.1016/j.ijoes.2023.100403

F. García-Ávila, G. Bonifaz-Barba, S. Donoso-Moscoso, L. F. del Pino, L. Ramos-Fernández, Dataset of copper pipes corrosion after exposure to chlorine, Data in Brief 19 (2018) 170-178. https://doi.org/10.1016/j.dib.2018.05.023

A. Toghan, A. Fawzy, A. I. Alakhras, A. A. Farag, Electrochemical and theoretical examination of some imine compounds as corrosion inhibitors for carbon steel in oil wells formation water, International Journal of Electrochemical Science 17 (2022) 2212108. https://doi.org/10.20964/2022.12.94

Y. Qiang, S. Zhang, L. Wang, Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid, Applied Surface Science 492 (2019) 228-238. https://doi.org/10.1016/j.apsusc.2019.06.190

N. M. El-Basiony, M. H. Sliem, A. A. Abd-Elaal, Theoretical and experimental insights into the C-steel aqueous corrosion inhibition at elevated temperatures in 1.0 M HCl via multicarbonyl Gemini cationic surfactants, Zeitschrift für Physikalische Chemie 237 (2023) 707-736. https://doi.org/10.1515/zpch-2023-0219

G. Kilinççeker, H. Demir, The inhibition effects of cysteine on the corrosion behaviour of copper in 3.5% NaCl solution, Anti-Corrosion Methods and Materials 60 (2013) 134-142. DOI:10.1108/00035591311315256

X. D. Chen, M. Gong, Q. S. Fu, X. W. Zheng, X. S . Feng, [Omim][Pro] amino acid ionic liquids as a corrosion inhibitor for copper in 3.5 % NaCl solution, Applied Mechanics and Materials 496-500 (2014) 47-50. https://doi.org/10.4028/www.scientific.net/AMM.496-500.47

G. Rajkumar, R. Sagunthala, M. G. Sethuraman, Investigation of inhibiting properties of self-assembled films of 4-aminothiophenol on copper in 3.5 % NaCl, Journal of Adhesion Science and Technology 29 (2015) 1107-1117. https://doi.org/10.1080/01694243.2015.1019391

D. Wang, B. Xiang, Y. Liang, S. Song, C. Liu, Corrosion control of copper in 3.5 wt.% NaCl Solution by domperidone: experimental and theoretical study, Corrosion Science 85 (2014) 77-86. https://doi.org/10.1016/j.corsci.2014.04.002

Y. Qiang, S. Zhang, S. Xu, L. Yin, The effect of 5- nitroindazole as an inhibitor for the corrosion of copper in a 3.0% NaCl solution, RSC Advances 5 (2015) 63866-63873. https://doi.org/10.1039/C5RA12933H

H. Tian, Y. F. Cheng, W. Li, B. Hou, Triazolyl-acylhydrazone derivatives as novel inhibitors for copper corrosion in chloride solutions, Corrosion Science 100 (2015) 341-352. https://doi.org/10.1016/j.corsci.2015.08.022

H. Tian, W. Li, K. Cao, B. Hou, Potent inhibition of copper corrosion in neutral chloride media by novel non-toxic thiadiazole derivatives, Corrosion Science 73 (2013) 281-291. https://doi.org/10.1016/j.corsci.2013.04.017

P. F. Khan, V. Shanthi, R. K. Babu, S. Muralidharan, R. C. Barik, Effect of benzotriazole on corrosion inhibition of copper under flow conditions, Journal of Environmental Chemical Engineering 3 (2015) 10-19. https://doi.org/10.1016/j.jece.2014.11.005

S. C. Dheeraj, M. A. Quraishi, C. Carrière, A. Seyeux, P. Marcus, A. Singh, Electrochemical, ToF-SIMS and computational studies of 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol as a novel corrosion inhibitor for copper in 3.5% NaCl, Journal of Molecular Liquids 289 (2019) 111113. https://doi.org/10.1016/j.molliq.2019.111113

Y. H. Lei, N. Sheng, A. Hyono, M. Ueda, T. Ohtsuka, Effect of benzotriazole (BTA) addition on polypyrrole film formation on copper and its corrosion protection, Progress in Organic Coating 77 (2014) 339-346. https://doi.org/10.1016/j.porgcoat.2013.10.009

A. Toghan, O. K. Alduaij, A. Fawzy, A. M. Eldesoky, A. A. Farag, Physicochemical, electrochemical, and theoretical study of the corrosion inhibition performance of copper using N-benzylhydrazinecarbothioamide in a 3.5% NaCl solution, Journal of Electrochemical Science and Engineering 14 (2024) 231-245. https://doi.org/10.5599/jese.2181

M. Finšgar, The first X-ray photoelectron spectroscopy surface analysis of 4-methyl-2-phenyl-imidazole adsorbed on copper, Analytical Methods 7 (2015) 6496-6503. https://doi.org/10.1039/C5AY00896D

M. Finšgar, D. Kek Merl, 2-Mercaptobenzoxazole as a copper corrosion inhibitor in chloride solution: electrochemistry, 3D-profilometry, and XPS surface analysis, Corrosion Science 80 (2014) 82-95. https://doi.org/10.1016/j.corsci.2013.11.022

G. Ezznaydy, A. Shaban, J. Telegdi, B. Ouaki, S. El Hajjaji, Inhibition of copper corrosion in saline solution by mono-hydroxamic acid, Journal of Materials and Environmental Science 6 (2015) 1819-1823. https://www.jmaterenvironsci.com/Document/vol6/vol6_N7/215.JMES-2015-Ezznaydi.pdf

S. L. Chi-Ucan, A. Castillo-Atoche, P. C. Borges, J. A. Manzanilla-Cano, G. Gonzalez-Garcıa, R. Patino, L. Dıaz-Ballote, Inhibition effect of glycerol on the corrosion of copper in NaCl solutions at different pH values, Journal of Chemistry 2014 (2014) 396405. https://doi.org/10.1155/2014/396405

A. Toghan, O. K. Alduaij, A. Fawzy, A. M. Mostafa, A. M. Eldesoky, A. A. Farag, Effect of adsorption and interactions of new triazole-thione-Schiff bases on the corrosion rate of carbon steel in 1 M HCl solution: Theoretical and experimental evaluation, ACS Omega 9 (2024) 6761-6772. https://doi.org/10.1021/acsomega.3c08127

G. Quartarone, M. Battilana, L. Bonaldo, T. Tortato, Investigation of the inhibition effect of indole-3-carboxylic acid on the copper corrosion in 0.5 M H2SO4, Corrosion Science 50 (2008) 3467-3474. https://doi.org/10.1016/j.corsci.2008.09.032

M. M. Shaban, N. M. El Basiony, A. B. Radwan, Electrochemical investigation of C-steel corrosion inhibition, in silico, and sulfate-reducing bacteria investigations using Pyrazole derivatives, ACS Omega 8 (2023) 30068-30080. https://doi.org/10.1021/acsomega.3c02333

S. Y. Sayed, M. S. El-Deab, B. E. El-Anadouli, B. G. Ateya, Synergistic effects of benzotriazole and copper ions on the electrochemical impedance spectroscopy and corrosion behavior of iron in sulfuric acid, Journal of Physical Chemistry B 107(2003) 5575. https://doi.org/10.1021/jp034334x

R. A. Anaee, I. Hameed R. Tomi, M. H. Abdulmajeed, S. A. Naser, M. M. Kathem, Expired Etoricoxib as a corrosion inhibitor for steel in acidic solution, Journal of Molecular Liquids 279 (2019) 594-602. https://doi.org/10.1016/j.molliq.2019.01.169

M. Finšgar, I. Milošev, Inhibition of copper corrosion by 1,2,3-benzotriazole: a review, Corrosion Science 52 (2010) 2737-2749. https://doi.org/10.1016/j.corsci.2010.05.002

H. A. Abdullah, R. A. Anaee, A. A. Khadom, A. T. Abd Ali, A. H. Malik, M. M. Kadhim, Experimental and theoretical assessments of the chamomile flower extract as a green corrosion inhibitor for aluminum in artificial seawater, Results in Chemistry 6 (2023) 101035. https://doi.org/10.1016/j.rechem.2023.101035

A. Toghan, A. Fawzy, Unraveling the adsorption mechanism and anti-corrosion functionality of dextrin and inulin as eco-friendly biopolymers for the corrosion of reinforced steel in 1.0 M HCl: A thermodynamic and kinetic approach, Polymers 15 (2023) 3144. https://doi.org/10.3390/polym15143144

K. Dahmani, M. Galai, M. Ouakki, M. Cherkaoui, R. Touir, S. Erkan, S. Kaya, B. El Ibrahimi, Quantum chemical and molecular dynamic simulation studies for the identification of the extracted cinnamon essential oil constituent responsible for copper corrosion inhibition in acidified 3.0 wt% NaCl medium, Inorganic Chemistry Communications 124 (2021) 108409. https://doi.org/10.1016/j.inoche.2020.108409

A. Toghan, A. Fawzy, A. I. Alakhras, N. Alqarni, M. E. A. Zaki, M. M. S. Sanad, A. A. Farag Experimental exploration, RSM modeling and DFT / MD simulations of the anticorrosion performance of naturally occurring amygdalin and raffinose for aluminum in NaOH solution, Coatings 13 (2023) 704. https://doi.org/10.3390/coatings13040704

A. M. Al-Ghaban, H. A. Abdullah, R. A. Anaee, S. A. Naser, A. A. Khadom, Expired butamirate drug as eco-friendly corrosion inhibitor for aluminum in seawater: Experimental and theoretical studies, Journal of Engineering Research 12(2024) 299-309.‏ https://doi.org/10.1016/j.jer.2023.11.020

K. H. Rashid, A. A. Khadom, S. H. Abbas, K. F. Al-Azawi, H. B. Mahood, Optimization studies of expired mouthwash drugs on the corrosion of aluminum 7475 in 1 M hydrochloric acid: Gravimetrical, electrochemical, morphological and theoretical investigations, Results in Surfaces and Interfaces 13 (2023) 100165. https://doi.org/10.1016/j.rsurfi.2023.100165

H. M. Elabbasy, A. Toghan, H. S. Gadow, Cysteine as an Eco-Friendly Anticorrosion Inhibitor for Mild Steel in Various Acidic Solutions: Electrochemical, Adsorption, Surface Analysis, and Quantum Chemical Calculations, ACS Omega 9 (2024) 13391-13411. https://doi.org/10.1021/acsomega.3c10522

H. S. Gadow, M. M. Motawea, H. M. Elabbasy, Investigation of myrrh extract as a new corrosion inhibitor for K-brass in 3.5 % NaCl solution polluted by 16 ppm sulfide, RSC Advances 7 (2017)29883-29898. https://doi.org/10.1039/C7RA04271J

Y. Tokura, Quinolone photoallergy: Photosensitivity dermatitis induced by systemic administration of photohaptenic drugs, Journal of Dermatological Science 18 (1998) 1-10. https://doi.org/10.1016/S0923-1811(98)00026-7.

V. Yadav, P. Talwar, Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth, Biomedicine & Pharmacotherapy 111 (2019) 934-946. https://doi.org/10.1016/j.biopha.2018.12.119.

S. Y. Peng, Z. N. Jiang, Y. R. Li, C. F. Dong, H. F. Liu, G. A. Zhang, A new exceptional imidazoline derivative corrosion inhibitor for carbon steel in supercritical CO2 environment, Corrosion Science 245 (2025) 112663. https://doi.org/10.1016/j.corsci.2024.112663

A. Toghan, O. K Alduaij, N. Alqarni, E M. Masoud, H. Alhussain, A. M. Mostafa, A. A. Farag, A. Fawzy, Mathematical, electrochemical, spectroscopic and microscopic monitoring of the adsorption effect of expired drugs on zinc corrosion in 3.5% NaCl solution, Results in Chemistry 13 (2025) 102006. https://doi.org/10.1016/j.rechem.2024.102006

X. Li, S. Deng, G. Mu, H. Fu, F. Yang, Inhibition effect of nonionic surfactant on the corrosion of cold rolled steel in hydrochloric acid, Corrosion Science 50 (2008) 420-430. https://doi.org/10.1016/j.corsci.2007.08.014

M. Christov, A. Popova, Adsorption characteristics of corrosion inhibitors from corrosion rate measurements, Corrosion Science 46 (2004) 1613-1620. https://doi.org/10.1016/j.corsci.2003.10.013

.K. Shukla, M. A. Quraishi, Cefotaxime sodium: a new and efficient corrosion inhibitor for mild steel in hydrochloric acid solution, Corrosion Science 51 (2009) 1007-1011. https://doi.org/10.1016/j.corsci.2009.02.024

M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, A. Gandomi, Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution, Corrosion Science 50 (2008) 2172-2181. https://doi.org/10.1016/j.corsci.2008.06.020

T. Zhao, G. Mu, The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid, Corrosion Science 41 (1999) 1937-1944. https://doi.org/10.1016/S0010-938X(99)00029-3

A. S. Fouda, S. A. Abd el-Maksoud, E. H. El-Sayed, H. A. Elbaz, A. S. Abousalem, Effectiveness of some novel heterocyclic compounds as corrosion inhibitors for carbon steel in 1 M HCl using practical and theoretical methods, RSC Advances 11 (2021) 19294-19309. https://doi.org/10.1039/D1RA03083C

T. K. Sarkar, M. Yadav, I. B. Obot, Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl, Chemical Engineering Journal 431 (2022) 133481. https://doi.org/10.1016/j.cej.2021.133481

W. Durnie, R. D. Marco, A. Jefferson, B. Kinsella, Development of a structure-activity relationship for oil field corrosion inhibitors, Journal of The Electrochemical Society 146 (1999) 1751-1758. https://doi.org/10.1149/1.1391837

M. Elachouri, M. S. Hajji, M. Salem, S. Kertit, J. Aride, R. Coudert, E. Essassi, Some nonionic surfactants as inhibitors of the corrosion of iron in acid chloride solutions, Corrosion 52 (1996) 103-108. https://doi.org/10.5006/1.3292100

B. Xu, Y. Liu, X. Yin, W. Yang, Y. Chen, Experimental and theoretical study of corrosion inhibition of 3-pyridinecarbozalde thiosemicarbazone for mild steel in hydrochloric acid, Corrosion Science 74 (2013) 206-213. https://doi.org/10.1016/j.corsci.2013.04.044

X. Huang, H. Jiang, K. Cao, W. Huang, J. Liu, B. Liu, H. Wang, Corrosion inhibition of tetrabutylphosphonium benzotriazolate on carbon steel in acidic medium, International Journal of Electrochemical Science 19 (2024) 100824. https://doi.org/10.1016/j.ijoes.2024.100824

A. Toghan, H. M. Dardeer, H. S.Gadow, H. M. Elabbasy: New promising halogenated cyclic imides derivatives as potential corrosion inhibitors for carbon steel in acidic environment, Journal of Molecular Liquids 325 (2021) 115136-115156. https://doi.org/10.1016/j.molliq.2020.115136

J. Marsh, Advanced Organic Chemistry, 3rd ed. Wiley, Eastern New Delhi, 1988.

ISBN 978-0-471-72091-1

N. O. Eddy, A. E Patricia, P. A. P. Mamza, Ethanol extract of Terminalia catappa as a green inhibitor for the corrosion of mild steel in H2SO4, Green Chemistry Letter Review 2 (2009) 223-231. https://doi.org/10.1080/17518250903359941

E. A. Noor, The inhibition of mild steel corrosion in phosphoric acid solutions by some N-heterocyclic compounds in the salt form, Corrosion Science 47 (2005) 33-53. https://doi.org/10.1016/j.corsci.2004.05.026

S. B. Aoun, Highly Efficient corrosion inhibition of carbon steel in aggressive acidic media with a pyridazinium-based ionic liquid, International Journal of Electrochemical Science 8 (2013) 10788-10804. https://doi.org/10.1016/S1452-3981(23)13148-8

H. Huang, Y. Fu, X. Wang, Y. Gao, Z. Wang, S. Zhang, H. Li, F. Gao, L. Chen, Nano- to Micro-Self-Aggregates of New Bisimidazole-Based Copoly(ionic liquid)s for Protecting Copper in Aqueous Sulfuric Acid Solution, ACS Applied Materials Interfaces 11

(2019) 10135-10145. https://doi.org/10.1021/acsami.8b19993

H. Ma, S. Chen, L. Niu, S. Zhao, S. Li, D. Li, Inhibition of copper corrosion by several Schiff bases in aerated halide solutions, Journal of Applied Electrochemistry 32 (2002) 65-72. https://doi.org/10.1023/A:1014242112512

K. F. Khaled, Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements, Materials and Chemistry Physics 125 (2011) 427-433. https://doi.org/10.1016/j.matchemphys.2010.10.037

E.-S. M. Sherif, Inhibition of copper corrosion reactions in neutral and acidic chloride solutions by 5-ethyl-1,3,4- thiadiazol-2-amine as a corrosion inhibitor, International Journal of Electrochemical Science 7 (2012) 2832-2845. https://doi.org/10.1016/S1452-3981(23)13918-6

A. L. Bacarella, J. C. Griess, The anodic dissolution of copper in flowing sodium chloride solutions between 25° and 175°C, Journal of The Electrochemical Society 120 (1973) 459-465. https://doi.org/10.1149/1.2403477

F. K. Crundwell, The anodic dissolution of copper in hydrochloric acid solutions, Electrochimica Acta 37 (1992) 2707-2714. https://doi.org/10.1016/0013-4686(92)85197-S

A. A. Farag, A. Toghan, Unravelling the adsorption and anti-corrosion potency of newly synthesized thiazole Schiff bases on C-steel in 1 M HCl: Computational and experimental implementations, Results in Engineering (2025) 104504. https://doi.org/10.1016/j.rineng.2025.104504

C. Deslouis, B. Tribollet, G. Mengoli, M. M. Musiani, Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation, Journal of Applied Electrochemistry 18 (1988) 374-383. https://doi.org/10.1007/BF01093751

Downloads

Published

09-03-2025

Issue

Section

Corrosion

How to Cite

Exploring the inhibitory performance of expired moxifloxacin and norfloxacin on copper corrosion in saline environment: Original scientific paper. (2025). Journal of Electrochemical Science and Engineering, 15(3), 2646. https://doi.org/10.5599/jese.2646

Funding data

Similar Articles

1-10 of 311

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)