Pyrazolone derivatives as corrosion inhibitors of copper in sulfuric acid solution
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2618Keywords:
Metal corrosion, pyrazole compounds, inhibition efficiency, adsorption isotherm, molecular dynamics simulationsAbstract
This study examines the corrosion inhibition of copper in aerated H2SO4 solution using 5-methyl, 5-phenyl, and 5-methyl-2-phenyl derivatives of 2,4-dihydro-3H-pyrazol-3-one (Py) through electrochemical techniques, gravimetric method, SEM, DFT and Monte Carlo simulation. The results showed that these compounds exhibited good inhibition efficiency, increasing in the order: Py II (84.9 %) < Py III (87.9 %) < Py I (90.1 %) at 10 mM. The pro¬tection efficiency improved with higher inhibitor concentration and decreased with rising temperature. Thermodynamic parameters for the inhibition process were calculated, with /delta)Hads0 values of -17.76±0.607, -15.8±0.101 and -16.24±0.118 kJ mol-1 for Py I, Py II and Py III, respectively, confirming the exothermic nature of adsorption. The adsorption fol¬lowed the Langmuir isotherm and occurred physically and spontaneously. Monte Carlo simulations indicated that PYs adsorbed in a parallel configuration, provide better coverage of the metal surface with high adsorption energy. SEM confirmed formation of a protective layer. Based on experimental and theoretical data, pyrazolone derivatives are recommended as corrosion inhibitors for copper in H2SO4 media.
Downloads
References
L. Nunez, E. Reguera, F. Corvo, E. González, C. Vazquez, Corrosion of copper in seawater and its aerosols in a tropical island, Corrosion Science 47 (2005) 461-484. https://doi.org/10.1016/j.corsci.2004.05.015
A.-Y. Zhu, J.-l. Chen, L. Zhou, L.-y. Luo, Q. Lei, L. Zhang, W. Zhang, Hot deformation behavior of novel imitation-gold copper alloy, Transactions of Nonferrous Metals Society of China 23 (2013) 1349-1355. https://doi.org/10.1016/S1003-6326(13)62603-5
E. T. Akinlabi, A. Andrews, S. A. Akinlabi, Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper, Transactions of Nonferrous Metals Society of China 24 (2014) 1323-1330. https://doi.org/10.1016/S1003-6326(14)63195-2
B. Tan, S. Zhang, Y. Qiang, W. Li, H. Liu, C. Xu, S. Chen, Insight into the corrosion inhibition of copper in sulfuric acid via two environmentally friendly food spices: Combining experimental and theoretical methods, Journal of Molecular Liquids 286 (2019) 110891. https://doi.org/10.1016/j.molliq.2019.110891
A. Zarrouk, B. Hammouti, A. Dafali, F. Bentiss, Inhibitive properties and adsorption of purpald as a corrosion inhibitor for copper in nitric acid medium, Industrial & Engineering Chemistry Research 52 (2013) 2560-2568. https://doi.org/10.1021/ie301465k
R. Chadli, M. Elazouzi, I. Khellad, A. M. Elhourri, H. Elmsellem, A. Aouniti, J. K. Mulengi, B. Hammoutii, Electrochemical and theoretical study of pyrazole 4-(4,5-dihydro-1H-pyrazol-5-yl)-N,N-dimethylaniline (D) as a corrosion inhibitor for mild steel in 1 M HCl, Portugaliae Electrochimica Acta 35 (2017) 65-80. https://doi.org/10.4152/pea.201702065
K.-c. Shen, G.-h. Li, W.-m. Wang, Thermal expansion behavior, microhardness and electrochemical corrosion resistance properties of Au52Cu27Ag17–x (NiZn0.5)x alloys, Transactions of Nonferrous Metals Society of China 26 (2016) 2900-2909. https://doi.org/10.1016/S1003-6326(16)64419-9
M. Akrom, S. Rustad, A. G. Saputro, H. K. Dipojono, Data-driven investigation to model the corrosion inhibition efficiency of pyrimidine-pyrazole hybrid corrosion inhibitors, Computational and Theoretical Chemistry 1229 (2023) 114307. https://doi.org/10.1016/j.comptc.2023.114307
H. Chahmout, M. Ouakki, S. Sibous, M. Galai, N. Arrousse, E. Ech-chihbi, Z. Benzekri, S. Boukhris, A. Souizi, M. Cherkaoui, New pyrazole compounds as a corrosion inhibitor of stainless steel in 2.0 M H2SO4 medium: Electrochemical and theoretical insights, Inorganic Chemistry Communications 147 (2023) 110150. https://doi.org/10.1016/j.inoche.2022.110150
S. Abd El Rehim, S. Sayyah, M. El-Deeb, S. M. Kamal, R. E. Azooz, Adsorption and corrosion inhibitive properties of P (2-aminobenzothiazole) on mild steel in hydrochloric acid media, International Journal of Industrial Chemistry 7 (2016) 39-52. https://doi.org/10.1007/s40090-015-0065-5
H. Lgaz, R. Salghi, A. Chaouiki, Shubhalaxmi, S. Jodeh, K. S. Bhat, Pyrazoline derivatives as possible corrosion inhibitors for mild steel in acidic media: A combined experimental and theoretical approach, Cogent Engineering 5 (2018) 1441585. https://doi.org/10.1080/23311916.2018.1441585
H. Lgaz, S. K. Saha, A. Chaouiki, K. S. Bhat, R. Salghi, Shubhalaxmi, P. Banerjee, I. H. Ali, M. I. Khan, I. M. Chung, Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies, Construction and Building Materials 233 (2020) 117320. https://doi.org/10.1016/j.conbuildmat.2019.117320
A. Chaouiki, M. Chafiq, H. Lgaz, H. Shubhalaxmi, K. S. Bhat, I. H. Ali, S. Masroor, Y. El Aoufir, Experimental and theoretical insights into the corrosion inhibition activity of a novel pyrazoline derivative for mild steel in 1.0 M HCl, Applied Journal of Environmental Engineering Science 6 (2020) 2079-2093. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i1.20261
N. A. Wazzan, I. Obot, S. Kaya, Theoretical modeling and molecular level insights into the corrosion inhibition activity of 2-amino-1,3,4-thiadiazole and its 5-alkyl derivatives, Journal of Molecular Liquids 221 (2016) 579-602. https://doi.org/10.1016/j.molliq.2019.117320
A.-B. Kamal, M. Mostfa, A. M. Ashmawy, M. S. El-Gaby, G. A. Ali, Corrosion inhibition behavior of the synthesized pyrazoline-sulfonamide hybrid of mild steel in aqueous solutions: Experimental and quantum investigations, Journal of Chemical Sciences 134 (2022) 90. https://doi.org/10.1007/s12039-022-02086-6
R. G. Pearson, Absolute electronegativity and hardness: applications to organic chemistry, The Journal of Organic Chemistry 54 (1989) 1423-1430. https://doi.org/10.1021/jo00267a034
S. Martinez, Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms, Materials Chemistry and Physics 77 (2003) 97-102. https://doi.org/10.1016/S0254-0584(01)00569-7
R. G. Parr, L. V. Szentpály, S. Liu, Electrophilicity index, Journal of the American Chemical Society 121 (1999) 1922-1924. https://doi.org/10.1021/ja983494x
W. Yang, W. J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, Journal of the American Chemical Society 108 (1986) 5708-5711. https://doi.org/10.1021/ja00279a008
C. Morell, A. Grand, A. Toro-Labbé, Theoretical support for using the Δf (r) descriptor, Chemical Physics Letters 425 (2006) 342-346. https://doi.org/10.1016/j.cplett.2006.05
Z. Qu, X. Wang, X. Shen, H. Zhou, Study of the Cu (111) Surface by Scanning Tunneling Microscopy: The Morphology Evolution, Reconstructions, Superstructures and Line Defects, Nanomaterials 12 (2022) 4278. https://doi.org/10.3390/nano12234278
M. Iwai, H. Majima, Y. Awakura, Dissolution of copper in hydrochloric acid solutions with dissolved molecular oxygen, Hydrometallurgy 20 (1988) 87-95. https://doi.org/10.1016/0304-386X(88)90028-X
M. Braun, K. Nobe, Electrodissolution kinetics of copper in acidic chloride solutions, Journal of The Electrochemical Society 126 (1979) 1666. https://iopscience.iop.org/article/10.1149/1.2128773/meta
L. Gao, S. Peng, X. Huang, Z. Gong, A combined experimental and theoretical study of papain as a biological eco-friendly inhibitor for copper corrosion in H₂SO₄ medium, Applied Surface Science 511 (2020) 145446. https://doi.org/10.1016/j.apsusc.2020.145446
A. A. Mahmmod, A. A. Khadom, A. A. H. Kadhum, A. Alamiery, Quinoxaline as a corrosion inhibitor for copper in nitric acid: Kinetics, statistical, and theoretical investigations, Case Studies in Chemical and Environmental Engineering 10 (2024) 100836. https://doi.org/10.1016/j.cscee.2024.100836
F. R. García-Galvan, S. Fajardo, V. Barranco, S. Feliu Jr, Experimental apparent stern–geary coefficients for AZ31B Mg alloy in physiological body fluids for accurate corrosion rate determination, Metals 11 (2021) 391. https://doi.org/10.3390/met11030391
C. Jeyaprabha, S. Sathiyanarayanan, K. Phani, G. Venkatachari, Influence of poly (amino-quinone) on corrosion inhibition of iron in acid media, Applied Surface Science 252 (2005) 966-975. https://doi.org/10.1016/j.apsusc.2005.01.098
R. T. Loto, C. A. Loto, A. P. Popoola, T. Fedotova, Inhibition effect of 2-amino-5-ethyl-1, 3, 4-thiadiazole on corrosion behaviour of austenitic stainless steel type 304 in dilute HCl solution, Journal of Central South University 23 (2016) 258-268. https://doi.org/10.1007/s11771-016-3069-1
Y. Zhang, Y. Cheng, F. Ma, K. Cao, Corrosion inhibition of carbon steel by 1-phenyl-3-amino-5-pyrazolone in H₂SO₄ solution, International Journal of Electrochemical Science 14 (2019) 999-1008. https://doi.org/10.20964/2019.01.69
Y. Xu, S. Zhang, C. Liao, Y. Zhou, L.H. Madkour, Halogen-substituted pyrazolo-pyrimidine derivatives as corrosion inhibitors for copper in sulfuric acid solution, International Journal of Corrosion and Scale Inhibition 7 (2018) 236-249. https://doi.org/10.17675/2305-6894-2018-7-2-9
D. Nalini, K. Kohilah, R. Sowmya, A combined experimental and theoretical investigation on pyrazolone derivative as corrosion inhibitor for mild steel in 0.5 M sulphuric acid media, Portugaliae Electrochimica Acta 32 (2014) 109-123. https://doi.org/10.4152/pea.201402109
M. Deyab, A. Fouda, M. Osman, S. Abdel-Fattah, Mitigation of acid corrosion on carbon steel by novel pyrazolone derivatives, RSC Advances 7 (2017) 45232-45240. https://doi.org/10.1039/C7RA08761F
A. Díaz-Gómez, R. Vera, A. Molinari, A. Oliva, W. Aperador, 5-Methyl-2, 4-dihydropyrazol-3-one and 5-methyl-2-phenyl-2, 4-didhydropyrazol-3-one as copper corrosion inhibitors in acidic media, International Journal of Electrochemical Science 10 (2015) 4004-4019. https://doi.org/10.1016/S1452-3981(23)06597-5
T. Yan, S. Zhang, L. Feng, Q. Yujie, L. Lansi, F. Denglin, W. Yanan, C. Jida, L. Wenpo, T. Bochuan, Investigation of imidazole derivatives as corrosion inhibitors of copper in sulfuric acid: combination of experimental and theoretical researches, Journal of the Taiwan Institute of Chemical Engineers 106 (2020) 118-129. https://doi.org/10.1016/j.jtice.2019.10.014
M. Quraishi, The corrosion inhibition effect of aryl pyrazolo pyridines on copper in hydrochloric acid system: computational and electrochemical studies, RSC Advances 5 (2015) 41923-41933. https://doi.org/10.1039/C5RA03966E
K. Ansari, M. Quraishi, A. Singh, S. Ramkumar, I. B. Obote, Corrosion inhibition of N80 steel in 15% HCl by pyrazolone derivatives: electrochemical, surface and quantum chemical studies, RSC Advances 6 (2016) 24130-24141. https://doi.org/10.1039/C5RA25441H
Y. Xu, S. Zhang, W. Li, L. Guo, S. Xu, L. Feng, L. H. Madkour, Experimental and theoretical investigations of some pyrazolo-pyrimidine derivatives as corrosion inhibitors on copper in sulfuric acid solution, Applied Surface Science 459 (2018) 612-620. https://doi.org/10.1016/j.apsusc.2018.08.037
S. Echihi, N. Benzbiria, M. Belghiti, M. El Fal, M. Boudalia, E. M. Essassi, A. Guenbour, A. Bellaouchou, M. Tabyaoui, M. Azzi, Corrosion inhibition of copper by pyrazole pyrimidine derivative in synthetic seawater: experimental and theoretical studies, Materials Today: Proceedings 37 (2021) 3958-3966. https://doi.org/10.1016/j.matpr.2020.09.264
S. Abd El Rehim, S. Sayyah, M. El-Deeb, S.M. Kamal, R. E. Azooz, Poly (o-phenylenediamine) as an inhibitor of mild steel corrosion in HCl solution, Materials Chemistry and Physics 123 (2010) 20-27. https://doi.org/10.1016/j.matchemphys.2010.02.069
R. Zvauya, J. Dawson, Inhibition studies in sweet corrosion systems by a quaternary ammonium compound, Journal of Applied Electrochemistry 24 (1994) 943-947. https://doi.org/10.1007/BF00348786
P. Desai, R. Vashi, Inhibitive efficiency of sulphathiazole for aluminum corrosion in trichloroacetic acid, Anti-Corrosion Methods and Materials 58 (2011) 70-75. https://doi.org/10.1108/00035591111110714
S. S. Pingale, A. P. Ware, S. R. Gadre, Unveiling electrostatic portraits of quinones in reduction and protonation states, Journal of Chemical Sciences 130 (2018) 50. https://doi.org/10.1007/s12039-018-1450-3
M. Mostfa, H. Gomaa, I. M. Othman, G. A. Ali, Experimental and theoretical studies of a novel synthesized azopyrazole-benzenesulfonamide derivative as an efficient corrosion inhibitor for mild steel, Journal of the Iranian Chemical Society 18 (2021) 1231-1241. https://doi.org/10.1007/s13738-020-02106-7
Y. Boughoues, M. Benamira, L. Messaadia, N. Ribouh, Adsorption and corrosion inhibition performance of some environmental friendly organic inhibitors for mild steel in HCl solution via experimental and theoretical study, Colloids and Surfaces A: Physicochemical and Engineering Aspects 593 (2020) 124610. https://doi.org/10.1016/j.colsurfa.2020.124610
L. Herrag, A. Chetouani, S. Elkadiri, B. Hammouti, A. Aouniti, Pyrazole derivatives as corrosion inhibitors for steel in hydrochloric acid, Portugaliae Electrochimica Acta 26 (2008) 211-220. https://peacta.org/articles_upload/PEA_26_2_211_220.pdf
A. Zarrouk, B. Hammouti, A. Dafali, Inhibition of copper corrosion in acid solution by N-1-naphthylethylenediamine dihydrochloride monomethanolate: experimental and theoretical study: part-1, Research on Chemical Intermediates 38 (2012) 1079-1089. https://doi.org/10.1007/s11164-011-0444-2
©2025 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article
distributed under the terms and conditions of the Creative Commons Attribution license


