Preparation and optimization of La0.6Sr0.4Fe1-yCoyO3-δ cathodes for intermediate temperature solid oxide fuel cells

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.2513

Keywords:

Ferro-cobaltite cathodes, electrochemical properties, thermal expansion coefficients, chemical compatibility
Graphical Abstract

Abstract

It is shown in this work that a synthetic route based on the auto-combustion of an ethylene glycol-metal nitrate polymerized gel precursor can be efficiently used to easily produce a range of La0.6Sr0.4Fe1-yCoyO3-δ nanopowders at moderate temperatures. We have been able to determine on air-sintered samples the effect of sintering temperature on the microstructure. At sintering temperatures as low as 1100 to1200 °C, grains are well defined with a uniform round spherical morphology and have a homogeneous sub-micrometer size distribution showing a highly densified microstructure. The electronic conductivity and thermal expansion coefficients (TEC) of sintered LSFC samples have been determined according to the variation of Fe/Co composition. Both measures clearly increase with the Co content. These materials also must exhibit chemical stability with electrolytes, most commonly used for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this way, the material as obtained is optimized in terms of chemical homogeneity and good stoichiometric control, microstructural characteristics of sintered samples, and finally the adequate Cobalt content to avoid high TEC mismatch with other components of the SOFC. This is a crucial issue as it causes an important thermo¬mechanical stress; promote extensive microcraking and significant performance degradation. Finally, these cathodes must exhibit acceptable electrochemical parameters for use in IT-SOFC.

Downloads

Download data is not yet available.

References

A. Talukdar, A. Chakrovorty, P. Sarmah, P. Paramasivam, V. Kumar, S. Kumar Yadav, S. Manickkam, A Review on Solid Oxide Fuel Cell Technology: An Efficient Energy Conversion System, International Journal of Energy Research (2024) 443247. https://doi.org/10.1155/2024/6443247

D. Mogensen, J.-D. Grunwaldt, P.V. Hendriksen, J.U. Nielsen, K. Dam-Johansen, Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration, Journal of Chemistry (2014) 10391. http://dx.doi.org/10.1155/2014/710391

Z. Zakaria, Z. Awang Mat, S. H. Abu Hassan, Y. B. Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, International Journal of Energy Research 44 (2020) 594-611. https://doi.org/10.1002/er.4907

M. S. Arshad, X. Y. Mbianda, I. Ali, G. Wanbing, T. Kamal, K. Kauhaniemi, S. Z. Hassan, G. Yasin, Advances and Perspectives on Solid Oxide Fuel Cells: From Nanotechnology to Power Electronics Devices, Energy Technology 11 (2023) 300452. https://doi.org/10.1002/ente.202300452

A. Moure, C. Moure, J. Tartaj, A significant improvement of the processing and electric properties of CeO2 co-doped with Ca and Sm by mechanosynthesis, Journal of Power Sources 196 (2011) 10543-10549. https://doi.org/10.1016/j.jpowsour.2011.07.088

M. Morales, J.J. Roa, J. Tartaj, M. Segarra, A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties, Journal of the European Ceramic Society 36 (2016) 1-16. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.09.025

A. Samreen, M. S. Ali, M. Huzaifa, N. Ali, B. Hassan, F. Ullah, S. Ali, N. A. Arifin, Advancements in Perovskite-Based Cathode Materials for Solid Oxide Fuel Cells: A Comprehensive Review, The Chemical Record 24 (2024) 1-27. https://doi.org/10.1002/tcr.202300247

S. D. Safian, N. I. Abd Malek, Z. Jamil, S-W. Lee, C-J. Tseng, N. Osman, Study on the surface segregation of mixed ionic-electronic conductor lanthanum-based perovskite oxide La1-x SrxCo1-yFeyO3-δ materials, International Journal of Energy Research 46 (2022) 7101-7117. https://doi.org/10.1002/er.7733

L. dos Santos-Gomez, J.M. Porras-Vázquez, E. R. Losilla, F. Martín, J. R. Ramos-Barrado, D. Marrero-López, Stability and performance of La0.6Sr0.4Co0.2Fe0.8O3-δ nanostructured cathodes with Ce0.8Gd0.2O1.9 surface coating, Journal of Power Sources 347 (2017) 178-185. http://dx.doi.org/10.1016/j.jpowsour.2017.02.045

N. Shah, X. Xu, J. Love, H. Wang, Z. Zhu, L. Ge, Mitigating thermal expansion effects in solid oxide fuel cell cathodes: A critical review, Journal of Power Sources 599 (2024) 234211. https://doi.org/10.1016/j.jpowsour.2024.234211

U. F. Vogt, P. Holtappels, J. Sfeir, J. Richter, S. Duval, D. Wiedenmann, A. Züttel, Influence of A-Site Variation and B-Site Substitution on the Physical Properties of (La,Sr)FeO3 Based Perovskites, Fuel Cells 9 (2009) 899-906. https://doi.org/10.1002/fuce.200800116

S. B. C. Duval, T.Graule, P. Holtappels, J. P. Ouweltjes, G. Rietveld, Evaluation of the Perovskite (La0.8Sr0.2)0.95Fe0.8Ni0.2O3–δ as SOFC Cathode, Fuel Cells 9 (2009) 911-914. https://doi.org/10.1002/fuce.200900154

L. Zhang, G. Chen, R. Dai, X. Lv, D. Yang, S. Geng, A review of the chemical compatibility between oxide electrodes and electrolytes in solid oxide fuel cells, Journal of Power Sources 492 (2021) 229630. https://doi.org/10.1016/j.jpowsour.2021.229630

A. Dutta, J. Mukhopadhyay, R. N. Basu, Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells, Journal of the European Ceramic Society 29 (2009) 2003–2011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.011

M. R. Cesario, D. A. Macedo, A. E. Martinelli, R. M. Nascimento, B. S. Barros, D. M. A. Melo, Synthesis, structure and electrochemical performance of cobaltite-based composite cathodes for IT-SOFC, Crystal Research and Technology 47 (2012) 723-730. https://doi.org/10.1002/crat.201100028

A. Chrzan, J. Karczewski, M. Gazda, D. Szymczewska, P. Jasinski, La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone, Journal of the European Ceramic Society 37 (2017) 3559-3564. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.032

I-. Hung, C-J Ciou, Y-J. Zeng, J-S. Wu, Y-C. Lee, A. Su, S-H. Chan, Conductivity and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ cathode prepared by the citrate–EDTA complexing method, Journal of the European Ceramic Society 31 (2011) 3095-3101. https://doi.org/10.1016/j.jeurceramsoc.2011.04.029

J. M. Perez-Falcon, A. Moure, J. Tartaj, Low-Temperature preparation of La0.6Sr0.4Fe0.8Co0.2O3−δ Sinterable Nanopowders by the Polymeric Organic Complex Solution Method, Fuel Cells 11 (2011) 75-80. https://doi.org/10.1002/fuce.201000061

P. Plonczak, M. Gazda, B. Kusz, P. Jasinski, Fabrication of solid oxide fuel cell supported on specially performed ferrite-based perovskite cathode, Journal of Power Sources 181 (2008) 1-7. https://doi.org/10.1016/j.jpowsour.2007.12.019

L. M. Acuña, J. Peña-Martínez, D. Marrero-López, R. O. Fuentes, P. Nuñez, D. G. Lamas, Electrochemical performance of nanostructured La0.6Sr0.4CoO3−δ and Sm0.5Sr0.5CoO3−δ cathodes for IT-SOFCs, Journal of Power Sources 196 (2011) 9276-9283. https://doi.org/10.1016/j.jpowsour.2011.07.067

K. Banerjee, J. Mukhopadhyay, R. N. Basu, Nanocrystalline doped lanthanum cobalt ferrite and lanthanum iron cobaltite-based composite cathode for significant augmentation of electrochemical performance in solid oxide fuel cell, International Journal of Hydrogen Energy 39 (2014) 15754-15759. http://dx.doi.org/10.1016/j.ijhydene.2014.07.109

S. P. Simner, J. P. Shelton, M. D. Anderson, J. W. Stevenson, Interaction between La(Sr)FeO3 SOFC cathode and YSZ electrolyte, Solid State Ionics 161 (2003) 11-18. https://doi.org/10.1016/S0167-2738(03)00158-9

Downloads

Published

07-11-2024

How to Cite

Tartaj, J., & Vázquez, A. (2024). Preparation and optimization of La0.6Sr0.4Fe1-yCoyO3-δ cathodes for intermediate temperature solid oxide fuel cells : Original scientific paper. Journal of Electrochemical Science and Engineering, 2513. https://doi.org/10.5599/jese.2513

Issue

Section

RSE SEE 9 Special Issue

Funding data