A new potential of sodium anthraquinone-2-sulfonate as a corrosion inhibitor for carbon steel in 0.5 M H2SO4
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2512Keywords:
Organic corrosion inhibitors, metal protection, weight loss, electrochemical tests, quantum chemical calculationsAbstract
The present study investigates the inhibitory properties of sodium anthraquinone-2-sulfonate (AQ2SNa). Weight loss measurements, electrochemical tests, and metal surface analysis were carried out in this study to evaluate the adsorption behavior of the compound and its influence on the corrosion rate of carbon steel in 0.5 mol dm-3 H2SO4 solution. Density functional theory DFT/B3LYP/6-311+G(d,p) and molecular dynamic simulation (MD) were applied for theoretical studies to evaluate the inhibiting effect and understand the mechanism of interaction of inhibitor molecules with Fe (110) surface. It was found that the inhibition efficiency of AQ2SNa in 0.5 mol dm-3 H2SO4 solution reached up to 94.44 % at the maximum concentration (0.5 g dm-3). Thermodynamic parameters show that the adsorption process is spontaneous and endothermic, suggesting the conformance of strong interactions between inhibitor and metal surface according to the Langmuir adsorption model. The spontaneous physisorption (ΔG0ads ˃ -20 kJ mol-1) of the inhibitor molecules led to high efficiency. Analysis of dynamic polarization curves showed that AQ2SNa acts as an inhibitor of a mixed nature. The results also indicate that AQ2SNa significantly increases the contact angle, indicating increased hydrophobicity due to the formation of a stable film on the metal surface. Theoretical parameters were compared to experimental data. The results highlight the novel potential of AQ2SNa as an effective corrosion inhibitor to provide an effective solution for enhancing the protection of carbon steel in acidic media.
Downloads
References
A. F. Hamood, H. S. Aljibori, M. A. I. Al-Hamid, A. A. Alamiery, W. K. Al-Azzawi, MOP as a Corrosion Inhibitor for Mild Steel in HCl Solution, A Comprehensive Study, The Progress in Color, Colorants and Coatings 17 (2024) 207-226. https://doi.org/10.30509/pccc.2023.167176.1237
T. Seilova, Z. Kunasheva, R. Kubasheva, N. Akatyev, Development of new three-component BNP-inhibitor for carbon steel in 0.5 mol dm-3 HCl solution, Thermodynamic, adsorption and electrochemical studies, The International Journal of Corrosion and Scale Inhibition 13 (2024) 1268-1291. http://dx.doi.org/10.17675/2305-6894-2024-13-2-33
H. Bairagi, P. Vashishth, G. Ji, S.K. Shukla, E. E. Ebenso, B. Mangla, Polymers and their composites for corrosion inhibition application: development, advancement, and future scope - a critical review, Corrosion Communications 15 (2024) 79-94. https://doi.org/10.1016/j.corcom.2023.10.006
M. Sheydaei, The Use of Plant Extracts as Green Corrosion Inhibitors: A Review, Surfaces 7 (2024) 380-403. http://dx.doi.org/10.3390/surfaces7020024
Q. Wang, R. Wang, Q. Zhang, C. Zhao, X. Zhou, H. Zheng, R. Zhang, Y. Sun, Z. Yan, Application of biomass corrosion inhibitors in metal corrosion control: a review, Molecules 28 (2023) 2832. http://dx.doi.org/10.3390/molecules28062832
G. Ji, Waste natural materials for sustainable corrosion prevention of steel: A mini review on their popularity, experimental and computational investigation, applications, challenges, and future strategy, Journal of Molecular Liquids 408 (2024) 125415 https://doi.org/10.1016/j.molliq.2024.125415
I. Pandey, A. V. Ullas, C. K. Rastogi, M. K. Singh, V. Kumar, B. Mangla, G. Ji, Extract Preparation of Waste Lady Finger Caps Using Ethanol, Generation of Extract’s Layers on Copper Through Drop Casting Without and with NiO Nanoparticles, and Study of their Corrosion Performances in Saline Water, Waste and Biomass Valorization (2024). https://doi.org/10.1007/s12649-024-02729-4
S.B. Ade, Corrosion inhibition of mild steel in different acid medium by using various acidic groups of organic compounds, International Journal for Research in Applied Science and Engineering Technology 10 (2022) 367-373. http://dx.doi.org/10.22214/ijraset.2022.40288
A. N. Kuzyukov, I. A. Levin, Effect of anthraquinone and some of its derivatives on the corrosion resistance of metals in sulfuric acid solutions, Chemical and Petroleum Engineering 5 (1969) 787-788. https://doi.org/10.1007/BF01153172
N. Muthukumar, A. Ilangovan, S. Maruthamuthu, N. Palaniswamy, A. Kimura, 1 - Aminoanthraquinone derivatives as a novel corrosion inhibitor for carbon steel API 5L-X60 in white petrol–water mixtures, Materials Chemistry and Physics 115 (1) (2009) 444-452. https://doi.org/10.1016/J.MATCHEMPHYS.2008.12.027
L. Saqalli, M. Galai, N. Gharda, M. Sahrane, R. Ghailane, M. Ebn Touhami, Y. Peres-lucchese, A. Souizi, N. Habbadi, Corrosion inhibition of carbon steel by anthraquinones derivatives in 1.0 M HCl: Electrochemical and quantum calculations, International Journal of Electrochemical Science 13(5) (2018) 5096-5119. https://doi.org/10.20964/2018.05.40
L. Saqalli, M. Galai, F. Benhiba, N. Gharda, N. Habbadi, R.Ghailane, M. Ebn Touhami, Y. Peres-lucchese, A. Souizi, R. Touir, Experimental and theoretical studies of Alizarin as corrosion inhibitor for mild steel in 1.0 M HCl solution. Journal of Materials and Environmental Science 8 (2017) 2455-2467. https://www.jmaterenvironsci.com/Document/vol8/vol8_N7/264-JMES-2627-Saqalli.pdf
Z. Bensouda, M. Driouch, M. Sfaira, A. Farah, M. Ebn Touhami, B. Hammouti, K. M. Emran, Effect of Mentha Piperita essential oil on mild steel corrosion in hydrochloric acid, International Journal of Electrochemical Science 13 (2018) 8198-8221. https://doi.org/10.20964/2018.08.79
X. Miao, X. Zhang, S. Chen, Y. Liu, Y. Chen, J. Lin, Y. Zhang, Dual-redox enhanced supercapacitors with sodium anthraquinone-2-sulfonate and potassium bromide, Electrochimica Acta 374 (2021) 137889. https://doi.org/10.1016/j.electacta.2021.137889
P. R. Maddigapu, A. Bedini, C. Minero, V. Maurino, D. Vione, M. Brigante, M. Sarakha, The pH-dependent photochemistry of anthraquinone-2-sulfonate, Photochemical & Photobiological Sciences 9 (2010) 323. https://doi.org/10.1039/b9pp00103d
A. V. Losub, S. S. Stahl, Palladium-Catalyzed Aerobic Oxidative Dehydrogenation of Cyclohexenes to Substituted Arene Derivatives, Journal of the American Chemical Society, 137 (2015) 3454-3457. https://doi.org/10.1021/ja512770u
L. Zhang, P. Chen, Y. Xu, W. Nie, Y. Zhou, Enhanced photo-induced antibacterial application of graphene oxide modified by sodium anthraquinone-2-sulfonate under visible light, Applied Catalysis B: Environmental 265 (2020) 118572. https://doi.org/10.1016/j.apcatb.2019.118572
S.Khankaew, A. Mills, D. Yusufu, N. Wells, S. Hodgen, W. Boonsupthip, P. Suppakul, Multifunctional anthraquinone-based sensors: UV, O2 and time, Sensors and Actuators B: Chemical 238 (2017) 76-82. http://dx.doi.org/10.1016/j.snb.2016.07.037
R. Sun, D. Han, C. Cui, Z. Han, X. Guo, B. Zhang, Y. Guo, Y. Liu, Z. Weng, Q.-H. Yang, A Self‐Deoxidizing Electrolyte Additive Enables Highly Stable Aqueous Zinc Batteries, Angewandte Chemie International Edition 62 (2023) e202303557. https://doi.org/10.1002/anie.202303557
L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian, M. Zhang, J. Wang, G. He, T. Liu, J. Hofkens, D.J.L. Brett, F. Lai, Tuning Ion Transport at the Anode‐Electrolyte Interface via a Sulfonate‐Rich Ion‐Exchange Layer for Durable Zinc‐Iodine Batteries, Advanced Energy Materials 13 (2023) 2203790. http://dx.doi.org/10.1002/aenm.202203790
ISO 8407-2021: Corrosion of metals and alloys - Removal of corrosion products from corrosion test specimens (2021). Geneva, Switzerland.
L. T. Popoola, Organic green corrosion inhibitors (OGCIs): a critical review, Corrosion Reviews 37(2) (2019) 71-102. https://doi.org/10.1515/corrrev-2018-0058
Ya. G. Avdeev, Yu. I. Kuznetsov, Chemical transformation of corrosion inhibitors in the aggressive environment/metal system, International Journal of Corrosion and Scale Inhibition 12(4) (2023) 1751-1790. https://dx.doi.org/10.17675/2305-6894-2023-12-4-19
C. G. Zhan, J. A. Nichols, D. A. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies, The Journal of Physical Chemistry A 107(20) (2003) 4184-4195. https://doi.org/10.1021/jp0225774
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr, General atomic and molecular electronic structure system, Journal of computational chemistry 14(11) (1993) 1347-1363. https://doi.org/10.1002/jcc.540141112
A. Klamt, The COSMO and COSMO-RS solvation models, WIREs Computational Molecular Science 8(1) (2017) e1338. https://doi.org/10.1002/wcms.1338
M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hessa, E. Lindahl, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. https://doi.org/10.1016/j.softx.2015.06.001
N. Mazlan, K. Jumbri, M. A. Kassim, R. A. Wahab, M. B. A. Rahman, Density functional theory and molecular dynamics simulation studies of bio-based fatty hydrazide-corrosion inhibitors on Fe (110) in acidic media, Journal of Molecular Liquids 347(1) (2022) 118321. https://doi.org/10.1016/j.molliq.2021.118321
M. Husaini, M.B. Ibrahim, Thermodynamic and Kinetic study on the corrosion, of aluminium in hydrochloric acid using benzaldehyde as corrosion inhibitor, International Journal of Engineering and Manufacturing 9(6) (2019) 53-64. https://doi.org/10.5815/ijem.2019.06.05
L. Afia, R. Salghi, A. Zarrouk, H. Zarrok, O. Benali, B. Hammouti, S. S. Al-Deyab, A. Chakir, L. Bazzih, Inhibitive action of argan press cake extract on the corrosion of steel in acidic media, Portugaliae Electrochimica Acta 30(4) (2012) 267-279. https://doi.org/10.4152/PEA.201204267
A. A. Khadom, A. S. Yaro, H. A. A. Kadum, A. S. AlTaie, A. Y. Musa, The Effect of Temperature and Acid Concentration on Corrosion of Low Carbon Steel in Hydrochloric Acid Media, American Journal of Applied Sciences 6(7) (2009) 1403-1409. https://doi.org/10.3844/ajassp.2009.1403.1409
J. Sirajudeen, M. M. Mohamed Mubashir, Statistical approach and assessment of physico-chemical status of ground water in near proximity of South Bank Canal, Tamil Nadu, India, Archives of Applied Science Research 5(2) (2013) 25-32.
A. A. Khadom, A. S. Yaro, A. A. H. Kadhum, Adsorption Mechanism of Benzotriazole for Corrosion Inhibition of Copper-Nickel Alloy in Hydrochloric Acid, Journal of the Chilean Chemical Society 55(1) (2010) 150-152. https://doi.org/10.4067/s0717-97072010000100035
N. Mohanapriya, M. Kumaravel, B. Lalithamani, Theoretical and experimental studies on the adsorption of n-[(E)-pyridin-2-ylmethylidene] aniline, a Schiff base, on mild steel surface in acid media, Journal of Electrochemical Science and Technology 11(2) (2020) 117-131. https://doi.org/10.33961/jecst.2019.00430
A. S. Fouda, H. E. Megahed, N. Fouad, N. M. Elbahrawi, Corrosion inhibition of carbon steel in 1 M hydrochloric acid solution by aqueous extract of Thevetia peruviana, Journal of Bio- and Tribo-Corrosion 2 (2016) 16. https://doi.org/10.1007/s40735-016-0046-z
M. Husaini, M. B. Ibrahim, Investigation of inhibition potential effect of organic compound for the corrosivity of phosphoric acid on aluminium, International Journal of Engineering and Manufacturing 10(1) (2020) 41-53. https://doi.org/10.5815/ijem.2020.01.04
R. Solmaz, G. Kardaş, B. Yazıcı, M. Erbil, Adsorption and corrosion inhibitive properties of
-amino-5-mercapto-1, 3, 4-thiadiazole on mild steel in hydrochloric acid media, Colloids and Surfaces A: Physicochemical and Engineering Aspects 312(1) (2008) 7-17. https://doi.org/10.1016/j.colsurfa.2007.06.035
El S. H. El Ashry, A. El Nem, S. A. Essawy, S. Ragab, Corrosion inhibitors, part 31: quantum chemical studies on the efficiencies of some aromatic hydrazides and Schiff bases as corrosion inhibitors of steel in acidic medium, Arkivoc 11 (2006) 205-220. https://doi.org/10.3998/ARK.5550190.0007.B21
P. Dhakal, W. Gassaway, J. K. Shah, Mapping the frontier orbital energies of imidazolium-based cations using machine learning, The Journal of Chemical Physics 159 (2023) 064513. https://doi.org/10.1063/5.0155775