Effect of CoO loading on electrochemical properties of activated carbon from sugarcane bagasse

Original scientific paper

Authors

  • Kyfti Yolanda Siburian Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0009-0001-6643-7630
  • Al Nadine De Nasti Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0009-0000-5209-713X
  • Enjeli Rotama Sidauruk Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0009-0006-6604-0672
  • Haryo Satriya Oktaviano Research and Technology Innovation, PT Pertamina (Persero), Jakarta, Indonesia https://orcid.org/0000-0001-6724-3558
  • Nona Merry M. Mitan Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0000-0002-6091-3608
  • Lisna Efiyanti Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Jl. Raya Bogor KM 46, Bogor 16911, Indonesia https://orcid.org/0000-0002-9200-541X
  • Nur Adi Saputra Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Jl. Raya Bogor KM 46, Bogor 16911, Indonesia https://orcid.org/0000-0003-1186-8529
  • Nur Layli Amanah Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0000-0003-2846-0239
  • Agung Nugroho Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia https://orcid.org/0000-0001-6422-7894

DOI:

https://doi.org/10.5599/jese.2439

Keywords:

Biomass, sugar industry byproduct, activated carbon production, cobalt oxide impregnation, specific capacitance
Graphical Abstract

Abstract

Activated carbon is synthesized from sugarcane bagasse (SB) through a pre-carbonization process in a muffle furnace at 400 °C, followed by carbonization and activation using the pyrolysis method at 800 °C. In the activation process, pre-carbonized SB is activated using 0.1 M NaOH. The activated carbon is then impregnated with cobalt oxide (CoO) using a hydrothermal method at 110 °C to improve its electrochemical performance. After impreg­nation, the presence of CoO is confirmed by X-ray diffraction patterns. Scanning electron microscopy suggests that the samples' morphology shows pore structures. Electrochemical properties are measured by cyclic voltammetry and galvanostatic charging-discharging techniques using a three-electrode system with 1 M Na2SO4 as an electrolyte. It is found that the specific capacitance of activated carbon from SB is 89.53 F/g, while after impreg­nation with CoO, it increases to 102.04 F/g at the same current density of 0.05 A/g.

Downloads

Download data is not yet available.

References

S. Koohi-Fayegh, M. A. Rosen, A review of energy storage types, applications and recent developments, Journal of Energy Storage 27 (2020) 101047. https://doi.org/10.1016/j.est.2019.101047

H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors, Journal of Power Sources 302 (2016) 164-173. https://doi.org/10.1016/j.jpowsour.2015.10.063

J. Castro-Gutiérrez, A. Celzard, V. Fierro, Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes, Frontiers in Materials 7 (2020) 217. https://doi.org/10.3389/fmats.2020.00217

D. A. G. Hegde, Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications - a review, RSC Advances 5 (2015) 88339-88352. https://doi.org/10.1039/C5RA19392C

O. Ioannidou, A. Zabaniotou, Agricultural residues as precursors for activated carbon production—A review, Renewable and Sustainable Energy Reviews 11 (2007) 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013

Z. Tan, J. Yang, Y. Liang, M. Zheng, H. Hu, H. Dong, Y. Liu, Y. Xiao, The changing structure by component: Biomass-based porous carbon for high-performance supercapacitors, Journal of Colloid and Interface Science 585 (2021) 778-786. https://doi.org/10.1016/j.jcis.2020.10.058

J.. Sun, X. Sun, H. Zhao, R. Sun, Isolation and characterization of cellulose from sugarcane bagasse, Polymer Degradation and Stability 84 (2004) 331-339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008

Lichchhavi, A. Kanwade, P. M. Shirage, A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes, Journal of Energy Storage 55 (2022) 105692. https://doi.org/10.1016/j.est.2022.105692

M. Girirajan, A. K. Bojarajan, I. N. Pulidindi, K. N. Hui, S. Sangaraju, An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors, Coordination Chemistry Reviews 518 (2024) 216080. https://doi.org/https://doi.org/10.1016/j.ccr.2024.216080

H. W. Park, K. C. Roh, Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors, Journal of Power Sources 557 (2023) 232558. https://doi.org/https://doi.org/10.1016/j.jpowsour.2022.232558

Annu, S.-S. Park, M. N. Alam, M. Yewale, D. K. Shin, Unraveling the Electrochemical Insights of Cobalt Oxide/Conducting Polymer Hybrid Materials for Supercapacitor, Battery, and Supercapattery Applications, Polymers (Basel) 16 (2024) 2907. https://doi.org/10.3390/polym16202907

A. P. Khedulkar, V. D. Dang, A. Thamilselvan, R. Doong, B. Pandit, Sustainable high-energy supercapacitors: Metal oxide-agricultural waste biochar composites paving the way for a greener future, Journal of Energy Storage 77 (2024) 109723. https://doi.org/https://doi.org/10.1016/j.est.2023.109723

Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, Mesoporous Transition Metal Oxides for Supercapacitors, Nanomaterials 5 (2015) 1667-1689. https://doi.org/10.3390/nano5041667

R. F. Susanti, R. G. R. Wiratmadja, H. Kristianto, A. A. Arie, A. Nugroho, Synthesis of high surface area activated carbon derived from cocoa pods husk by hydrothermal carbonization and chemical activation using zinc chloride as activating agent, Materials Today: Proceedings 63 (2022) S55-S60. https://doi.org/10.1016/j.matpr.2022.01.042

R. E. Haraki, A. A. Arie, R. F. Susanti, H. S. Oktaviano, A. Nugroho, Synthesis and Electrochemical Properties of ZnO/Activated Carbon from Vetiver Distillation Waste, Engineering Chemistry 2 (2023) 35-41. https://doi.org/10.4028/p-1z7h01

H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86 (2007) 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

M. Dwiyaniti, A.. Elang Barruna, R. Muhamad Naufal, I. Subiyanto, R. Setiabudy, C. Hudaya, Extremely high surface area of activated carbon originated from sugarcane bagasse, IOP Conference Series: Materials Science and Engineering 909 (2020) 012018. https://doi.org/10.1088/1757-899X/909/1/012018

A. F. Hassan, A. M. Youssef, Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(II) adsorption, Carbon Letters 15 (2014) 57-66. https://doi.org/10.5714/CL.2014.15.1.057

X. Li, Y. Jiang, P. Wang, Y. Mo, W. Lai, Z. Li, R. Yu, Y. Du, X. Zhang, Y. Chen, Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors, New Carbon Materials 35 (2020) 232-243. https://doi.org/10.1016/S1872-5805(20)60487-5

M. Rahimi-Nasrabadi, H. R. Naderi, M. S. Karimi, F. Ahmadi, S. M. Pourmortazavi, Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation, Journal of Materials Science: Materials in Electronics 28 (2017) 1877-1888. https://doi.org/10.1007/s10854-016-5739-z

S. Sarkar, A. Arya, U. K. Gaur, A. Gaur, Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors, Biomass and Bioenergy 142 (2020) 105730. https://doi.org/10.1016/j.biombioe.2020.105730

R. Azargohar, A. K. Dalai, Biochar As a Precursor of Activated Carbon, Applied Biochemistry and Biotechnology 131 (2006) 762-773. https://doi.org/10.1385/ABAB:131:1:762

D. J. Tarimo, K. O. Oyedotun, A. A. Mirghni, B. Mutuma, N. F. Sylla, P. Murovhi, N. Manyala, Enhanced electrochemical performance of supercapattery derived from sulphur-reduced graphene oxide/cobalt oxide composite and activated carbon from peanut shells, International Journal of Hydrogen Energy 45 (2020) 33059-33075. https://doi.org/10.1016/j.ijhydene.2020.09.142

S. Xiong, Y. He, X. Zhang, B. Wu, J. Chu, X. Wang, R. Zhang, M. Gong, Z. Li, Z. Chen, Hydrothermal synthesis of high specific capacitance electrode material using porous bagasse biomass carbon hosting MnO2 nanospheres, Biomass Conversion and Biorefinery 11 (2021) 1325-1334. https://doi.org/10.1007/s13399-019-00525-y

A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61 (2000) 14095-14107. https://doi.org/10.1103/PhysRevB.61.14095

E. Taer, Iwantono, S. T. Manik, R. Taslim, D. Dahlan, M. Deraman, Preparation of Activated Carbon Monolith Electrodes from Sugarcane Bagasse by Physical and Physical-Chemical Activation Process for Supercapacitor Application, Advanced Materials Research 896 (2014) 179-182. https://doi.org/10.4028/www.scientific.net/AMR.896.179

T. Adinaveen, L. J. Kennedy, J. J. Vijaya, G. Sekaran, Studies on structural, morphological, electrical and electrochemical properties of activated carbon prepared from sugarcane bagasse, Journal of Industrial and Engineering Chemistry 19 (2013) 1470-1476. https://doi.org/10.1016/j.jiec.2013.01.010

Y. Wang, L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review, Journal of Materials Science 56 (2020) 173-200. https://doi.org/10.1007/S10853-020-05157-6

N. R. Chodankar, H. D. Pham, A. K. Nanjundan, J. F. S. Fernando, K. Jayaramulu, D. Golberg, Y. Han, D. P. Dubal, True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors, Small 16 (2020) 2002806. https://doi.org/10.1002/smll.202002806

V. Sannasi, K. Subbian, Influence of Moringa oleifera gum on two polymorphs synthesis of MnO2 and evaluation of the pseudo-capacitance activity, Journal of Materials Science: Materials in Electronics 31 (2020) 17120-17132. https://doi.org/10.1007/s10854-020-04272-z

A. Pradiprao Khedulkar, V. Dien Dang, B. Pandit, T. Ai Ngoc Bui, H. Linh Tran, R. Doong, Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor application, Journal of Colloid and Interface Science 623 (2022) 845-855. https://doi.org/10.1016/j.jcis.2022.04.178

J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao, H. Dou, Y. Xia, X. Zhang, Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization, National Science Review 4 (2017) 71-90. https://doi.org/10.1093/nsr/nww072

Published

10-12-2024 — Updated on 10-12-2024

How to Cite

Siburian , K. Y., Nasti, A. N. D., Sidauruk, E. R., Oktaviano, H. S., Mitan, N. M. M., Efiyanti, L., Saputra, N. A., Amanah, N. L., & Nugroho, A. (2024). Effect of CoO loading on electrochemical properties of activated carbon from sugarcane bagasse: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(6), 705–717. https://doi.org/10.5599/jese.2439

Issue

Section

Batteries and supercapacitors

Funding data