Bioactivity and corrosion analysis of thermally sprayed hydroxyapatite based coatings

Review paper

Authors

DOI:

https://doi.org/10.5599/jese.2340

Keywords:

Biocompatibility, biomaterials, surface engineering, plasma spray, bio-implants, fixation devices

Abstract

Metallic biomaterials have been used to repair and replace human body parts because of their excellent biocompatibility, strong corrosion resistance, and high mechanical properties. A ceramic biomaterial that is highly suitable for coating on metallic biomaterials is hydroxyapatite. This is because it is biocompatible with synthetic and natural bone tissue. There has been a growing interest in HAp-based coatings using thermal spray techniques to enhance the crystallinity and adhesion quality and produce a dense coating of metallic biomaterials. Thermally sprayed coating material has been studied and reviewed in detail in the bioactivity analysis and electro-corrosion analysis. Furthermore, the bioactivity of HAp coatings is determined by their ability to promote bone formation and osseointegration and a valuable understanding of the mechanisms and current advancements in bioactivity. Additionally, the corrosion behaviour of thermally sprayed HAp coatings under simulated conditions has been reviewed.

Downloads

Download data is not yet available.

References

M.W. Archunan and S. Petronis, Bone grafts in trauma and orthopaedics, Cureus 13 (2021) 17705. https://doi.org/10.7759/cureus.17705

R. B. Heimann, Plasma-Sprayed Hydroxylapatite Coatings as Biocompatible Intermediaries Between Inorganic Implant Surfaces and Living Tissue, Journal of Thermal Spray Technology 27 (2018) 1212-1237. https://doi.org/10.1007/s11666-018-0737-8

P. Gkomoza a , M. Vardavoulias a , D.I. Pantelis b , Ch. Sarafoglou b., Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants, Surface & Coatings Technology 357 (2019) 748-758. https://doi.org/10.1016/j.surfcoat.2018.10.044

Seisho Take, Tusyoshi Otabe, Wataru Ohgake, Taro Atsumi, Effect of Ti intermediate layer on properties of HAP plasma sprayed biocompatible coatings, Corrosion Science and Technology 19 (2020) 51-56. https://doi.org/10.14773/CST.2020.19.2.51

Xuanyong Liu, Paul K. Chu, Chuanxian Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering R: Reports 47 (2004) 49-121. https://doi.org/10.1016/j.mser.2004.11.001

C. C. Berndt, Fahad Hasan, U. Tietz, K.-P. Schmitz, A review of hydroxyapatite coatings manufactured by thermal spray. Advances in Calcium Phosphate Biomaterials 2 (2014) 267-329. https://doi.org/10.1007/978-3-642-53980-0_9

J.F. Kay, Plasma sprayed hydroxyapatite coatings for enhanced biocompatibility, Materials Technology 8 (1993) 26-29. https://doi.org/10.1080/10667857.1993.11784929

K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. De Padova, and G. Hegde, Recent Trends and Progress in Corrosion Inhibitors and Electrochemical Evaluation, Applied Sciences (Switzerland) 13 (2023) 1017. https://doi.org/10.3390/app131810107

N. Donkov, A. Zykova, V. Safonov, D. Kolesnikov, I. Goncharov, S. Yakovin, and V. Georgieva, Modification of the structure and composition of Ca10(PO4)6(OH)2 ceramic coatings by changing the deposition conditions in O2 and Ar, Journal of Physics: Conference Series, Institute of Physics Publishing, 514 (2014) 012017. https://doi.org/10.1088/1742-6596/514/1/012017

K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials 28 (2007) 618-624. https://doi.org/10.1016/j.biomaterials.2006.09.013

M. C. Bautista, J. H. Bedoya, B. O. Bautista, J. C. Castuera, A. L. Giraldo-Betancur, D. G. Espinosa-Arbelaez, J. M. Alvarado-Orozco, G. A. Clavijo-Mejía, L. G. Trapaga-Martínez, C. A. Poblano-Salas, HVOF Hydroxyapatite/Titania-Graded Coatings: Microstructural, Mechanical, and In Vitro Characterization, Journal of Thermal Spray Technology 27 (2018) 1302-1321. https://doi.org/10.1007/s11666-018-0811-2

M. Ammar, S. Ashraf, and J. Baltrusaitis, Nutrient-Doped Hydroxyapatite: Structure, Synthesis and Properties, Ceramics 6 (2023) 1799-1825. https://doi.org/10.3390/ceramics6030110

S. Sutha, K. Kavitha, G. Karunakaran,V. Rajendran, In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants, Materials Science and Engineering 33 (2013) 4046-4054. https://doi.org/10.1016/j.msec.2013.05.047

Poblano-Salas, Carlos A., John Henao, Astrid L. Giraldo-Betancur, Paola Forero-Sossa, Diego German Espinosa-Arbelaez, Jorge A. González-Sánchez, Luis R. Dzib-Pérez, Susana T. Estrada-Moo, and Idelfonso E. Pech-Pech, HVOF-sprayed HAp/S53P4 BG composite coatings on an AZ31 alloy for potential applications in temporary implants, Journal of Magnesium and Alloys 12 (2024) 345-360. https://doi.org/10.1016/j.jma.2023.12.010

M. Meischel, J. Eichler, Martinelli, U. Karr, J. Weigel, G. Schmöller, E.K. Tschegg, S. Fischerauer, A.M. Weinberg, S.E. Stanzl-Tschegg, Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications, Journal of the Mechanical Behavior of Biomedical Materials 53 (2016) 104-118. https://doi.org/10.1016/j.jmbbm.2015.08.004

Z. Song, H. Li, Plasma Spraying with Wire Feeding: A Facile Route to Enhance the Coating/Substrate Interfacial Metallurgical Bonding, Coatings 12 (2022) 615. https://doi.org/10.3390/coatings12050615

W.S. Lei, K. Mittal, Z. Yu, Adhesion measurement of coatings on biodevices/implants: A critical review, Reviews of Adhesion and Adhesives 4 (2016) 367-396. https://doi.org/10.7569/RAA.2016.09713

K. K. A. Mosas, A. R. Chandrasekar, A. Dasan, A. Pakseresht, D. Galusek, Recent Advancements in Materials and Coatings for Biomedical Implants, Gels 8 (2022) 323. https://doi.org/10.3390/gels8050323

Y. Oshida and Y. Guven, 10 - Biocompatible coatings for metallic biomaterials, Surface Coating and Modification of Metallic Biomaterials 10 (2015) 287-343. https://doi.org/10.1016/B978-1-78242-303-4.00010-7

S. Kaur, S. Sharma, and N. Bala, A comparative study of corrosion resistance of biocompatible coating on titanium alloy and stainless steel, Material Chemistry and Physics 238 (2019). https://doi.org/10.1016/j.matchemphys.2019.121923

M. Bencina, M. Resnik, P. Staric, I. Junkar, Use of plasma technologies for antibacterial surface properties of metals, Molecules 26 (2021) 1418. https://doi.org/10.3390/molecules26051418

Md Al-Amin,A. M. Abdul-Rani, M. Danish, S. Rubaiee, A. b. Mahfouz, H. M. Thompson,S. Ali, D. Rajendra Unune, M. H. Sulaiman, Investigation of coatings, corrosion and wear characteristics of machined biomaterials through hydroxyapatite mixed-EDM process: A review, Materials 14 (2021) 3597. https://doi.org/10.3390/ma14133597

W.S.W. Harun, R.I.M. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A.C. Ghani, J.H.M. Shariffuddin, A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials, Ceramics International 44 (2018) 1250-1268. https://doi.org/10.1016/j.ceramint.2017.10.162

R. K. Guduru, U. Dixit, A. Kumar, A critical review on thermal spray based manufacturing technologies, Materials Today: Proceedings 62 (2022) 7265-7269. https://doi.org/10.1016/j.matpr.2022.04.107

A. Killinger, R. Gadow, Thermally Sprayed Materials for Biomedical Applications, in Encyclopedia of Materials: Technical Ceramics and Glasses 3 (2021) 732-749. https://doi.org/10.1016/B978-0-12-803581-8.12111-3

P. K. Verma, A. S. Minhas, P. Singh, S. Kumar, Slurry Erosion Behaviour of Thermal Sprayed Al2O3 and Cr2O3 Coatings for Turbine Steels, AIP Conference Proceedings, American Institute of Physics 2986 (2024) 020012. https://doi.org/10.1063/5.0192589

X. Mo, D. Zhang, K. Liu, X. Zhao, X. Li, Wei Wang, Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. International Journal of Molecular Sciences 24 (2023) 1291. https://doi.org/10.3390/ijms24021291

N.Aebli, J.Krebs, H. Stich, P. Schawalder, M. Walton, D. Schwenke, H. Gruner, B. Gasser, J. C. Theis, In vivo comparison of the osseointegration of vacuum plasma sprayed titanium-and hydroxyapatite-coated implants, Journal of Biomedical Materials Research A 66 (2003) 356-363. https://doi.org/10.1002/jbm.a.10508

R. S. Pillai, M. Frasnelli, V. M. Sglavo, HA/β-TCP plasma sprayed coatings on Ti substrate for biomedical applications. Ceramics International 44 (2018) 1328-1333. https://doi.org/10.1016/j.ceramint.2017.08.113

A. Ganvir, S. Nagar, N. Markocsan, K. Balani, Deposition of hydroxyapatite coatings by axial plasma spraying: Influence of feedstock characteristics on coating microstructure, phase content and mechanical properties. Journal of the European Ceramic Society 41 (2021) 4637-4649. https://doi.org/10.1016/j.jeurceramsoc.2021.02.050

S. Kowalski, W. Gonciarz, R.Belka, A. Góral, M. Chmiela,Ł.Lechowicz, W. Kaca, W. Żórawski, Plasma-sprayed hydroxyapatite coatings and their biological properties. Coatings 12 (2022) 1317. https://doi.org/10.3390/coatings12091317

J. Henao, O. S. Mazon, A. L. G. Betancur, J. H. Bedoya, D. G. E. Arbelaez, C. P. Salas, C. C. Arteaga, J. C. Castuera, L. M. Gomez, Study of HVOF-sprayed hydroxyapatite/titania graded coatings under in-vitro conditions, Journal of Electrochemical Science and Engineering 9 (2020) 14002-14016. https://doi.org/10.1016/j.jmrt.2020.10.005

H.C. Melero, R.T. Sakai, Vignatti, C.A. Benedetti, A.V., J. Fernández, J.M. Guilemany, Suegama, Corrosion resistance evaluation of HVOF produced hydroxyapatite and TiO2-hydroxyapatite coatings in hanks’ solution, Materials Research 21 (2018) 20170210. https://doi.org/10.1590/1980-5373-MR-2017-0210

D. Shankar, K. Jayaganesh, N. Gowda, K. S. Lakshmi, K. J. Jayanthi, S. C. Jambagi, Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants, Biomaterials Advances 158 (2024) 213791. https://doi.org/10.1016/j.bioadv.2024.213791

L. Singh, V. Chawla, J. S. Grewal, A review on detonation gun sprayed coatings. Journal of Minerals and Materials Characterization and Engineering 11 (2012) 243-265. https://doi.org/10.4236/jmmce.2012.113019

F. Taherkhani, A. List, S. Keller, N. Kashaev, F. Gärtner, T. Klassen, The Influence of Spraying Parameters and Powder Sizes on the Microstructure and Mechanical Behavior of Cold-Sprayed Inconel®625 Deposits, Journal of Thermal Spray Technology 33 (2024) 652-665. https://doi.org/10.1007/s11666-024-01712-8

N. Hutasoit, M. A. Khalik, S. Palanisamy, 9.03 - Cold spray additive manufacturing, Comprehensive Materials Processing (Second Edition) 9 (2024) 25-56. https://doi.org/10.1016/b978-0-323-96020-5.00232-6

K. Khlifi, H. Dhiflaoui, A. Ben Rhouma, J. Faure, H. Benhayoune, and A. B. C. Laarbi, Nanomechanical behavior, adhesion and corrosion resistance of hydroxyapatite coatings for orthopedic implant applications, Coatings 11 (2021) 477. https://doi.org/10.3390/coatings11040477

A. Das, M. Shukla, Surface morphology and in vitro bioactivity of biocompatible hydroxyapatite coatings on medical grade S31254 steel by RF magnetron sputtering deposition, Transactions of the Institute of Metal Finishing 95 (2017) 276-281. https://doi.org/10.1080/00202967.2017.1323675

S. Mohandesnezhad, M. Etminanfar, S. Mahdavi, and M. S. Safavi, Enhanced bioactivity of 316L stainless steel with deposition of polypyrrole/hydroxyapatite layered hybrid coating: Orthopedic applications, Surfaces and Interfaces 28 (2022) 101604. https://doi.org/10.1016/j.surfin.2021.101604

M. Blum, M. Sayed, E. M. Mahmoud, A. Killinger, R. Gadow, S. M. Naga. In vitro evaluation of biologically derived hydroxyapatite coatings manufactured by high-velocity suspension spraying. Journal of Thermal Spray Technology 30 (2021) 1891-1904. https://doi.org/10.1007/s11666-021-01265-0

A. Vlădescu, A. Pârâu, I. Pană, C. M. Cotruț, L. R. Constantin, V. Braic, D. M. Vrânceanu, In vitro activity assays of sputtered HAp coatings with SiC addition in various simulated biological fluids. Coatings 9 (2019) 389. https://doi.org/10.3390/coatings9060389

D.J. Patty, A.D. Nugraheni, I. Dewi Ana, Y. Yusuf, Mechanical characteristics and bioactivity of nanocomposite hydroxyapatite/collagen coated titanium for bone tissue engineering, Bioengineering 9 (2022) 784. https://doi.org/10.3390/bioengineering9120784

S. Tiwari, S. B. Mishra, Post annealing effect on corrosion behavior, bacterial adhesion, and bioactivity of LVOF sprayed hydroxyapatite coating, Surface Coating and Technology 405 (2021) 126500. https://doi.org./10.1016/j.surfcoat.2020.126500

P. Singh, A. Bansal, H. Vasudev, and P. Singh, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography 9 (2021) 035053. https://doi.org/10.1088/2051-672X/ac28a9

E. A. Ofudje, J. A. Akande, E. F. Sodiya, G. O. Ajayi, A. J. Ademoyegun, A. G. Al-Sehemi, Yasar N. Kavil, Ammar M. Bakheet, Bioactivity properties of hydroxyapatite/clay nanocomposites, Scientific Reports 13 (2023). 19896 https://doi.org/10.1038/s41598-023-45646-7

N. K. Mishra, S. B. Mishra, R. Kumar, Characterisation and oxidation of LVOF sprayed Al2O3-40TiO2 coating on Superalloys, Surface Engineering 31 (2015) 349-353. https://doi.org/10.1179/1743294414Y.0000000348

D. Qiu, A. Wang, Y. Yin, Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition, Applied Surface Science 257 (2010) 1774-1778. https://doi.org/10.1016/j.apsusc.2010.09.014

A. M. Ribeiro, A. C. Alves, F. S. Silva, F. Toptan, Electrochemical characterization of hot pressed CoCrMo-HAP biocomposite in a physiological solution, Materials and Corrosion 66 (2015) 790-795. https://doi.org/10.1002/maco.201407885

T. S. Bedi, S. Kumar, R. Kumar, Corrosion performance of hydroxyapaite and hydroxyapaite/titania bond coating for biomedical applications, Materials Research Express 7 (2019) 015402. https://doi.org/10.1088/2053-1591/ab5cc5

G. Manivasagam, Geetha, Durgalakshmi Dhinasekaran, Asokamani Rajamanickam, Biomedical implants: corrosion and its prevention-a review, Recent Patents on corrosion Science 2 (2010) 40-54. https://doi.org/10.2174/1877610801002010040

K. Bijapur, V. Molahalli, A. Shetty, A. Toghan, P. D. Padova, G. Hegde, Recent trends and progress in corrosion inhibitors and electrochemical evaluation. Applied Sciences 13 (2023) 10107. https://doi.org/10.3390/app131810107

P. K. Verma, S. Singh, M. Kapoor, and S. Singh, A review on the surface topography and corrosion behavior of Mg-alloy coatings for biomedical implants, Results in Surfaces and Interfaces 15 (2024) 100227. https://doi.org/10.1016/j.rsurfi.2024.100227

B. Tian, D. B. Xie, and F. H. Wang, Corrosion behavior of TiN and TiN/Ti composite films on Ti6Al4V alloy in Hank’s solution, Journal of Applied Electrochemistry 39 (2009) 447-453. https://doi.org/10.1007/s10800-008-9690-4

M. Nabeel, A. Farooq, S. Miraj, U. Yahya, K. Hamad, and K. M. Deen, Comparison of the Properties of Additively Manufactured 316L Stainless Steel for Orthopedic Applications: A Review, World Scientific Annual Review of Functional Materials 01 (2023) 2810-9228. https://doi.org/10.1142/s281092282230001x

B. G. Pound, Electrochemical behavior of cobalt - Chromium alloys in a simulated physiological solution, Journal of Biomedical Materials Research Part A 94 (2010) 93-102. https://doi.org/10.1002/jbm.a.32684

R. Kumar, P. Katyal, M. Gupta, V. Singh, Electrochemical Corrosion Behaviour Analysis of Mg-Alloys Used for Orthopaedics and Vascular Implants, IOP Conference Series: Materials Science and Engineering 1225 (2022) 012063. https://doi.org/10.1088/1757-899x/1225/1/012063

D. Runsewe, T. Betancourt, J. A. Irvin, Biomedical application of electroactive polymers in electrochemical sensors, Materials 12 (2019) 2629. https://doi.org/10.3390/ma12162629

E. Anees, M. Riaz, H. Imtiaz, T. Hussain, Electrochemical corrosion study of chitosan-hydroxyapatite coated dental implant, Journal Mechechanical Behaviour Biomedical Materials 150 (2024) 106268 https://doi.org/10.1016/j.jmbbm.2023.106268

C. T. Kwok, P. K. Wong, F. T. Cheng, H. C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition, Applied Surface Science 255 (2009) 6736-6744. https://doi.org/10.1016/j.apsusc.2009.02.086

D. Snihirova, L. Liphardt, G. Grundmeier, F. Montemor, Electrochemical study of the corrosion inhibition ability of ‘smart’ coatings applied on AA2024, Journal of Solid State Electrochemistry 17 (2013) 2183-2192. https://doi.org/10.1007/s10008-013-2078-3

L. De Micheli, C. A. Barbosa, A. H. P. Andrade, S. M. L. Agostinho, “Electrochemical behaviour of 254SMO stainless steel in comparison with 316L stainless steel and Hastelloy C276 in HCl media, British Corrosion Journal 35 (2000) 297-300. https://doi.org/10.1179/000705900101501371

G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical Implants: Corrosion and its Prevention, Recent Patents on Corrosion Science 2 (2010) 1877-6108. https://doi.org/10.2174/1877610801002010040

Shemtov-Yona, Keren, Daniel Rittel, An overview of the mechanical integrity of dental implants, Biomedical Research International 2015 (2015) 2314-6141 https://doi.org/10.1155/2015/547384

Y. Huang, H. Qiao, X. Nian, X. Zhang, X. Zhang, G. Song, Z. Xu, H. Zhang, S. Han, Improving the bioactivity and corrosion resistance properties of electrodeposited hydroxyapatite coating by dual doping of bivalent strontium and manganese ion, Surface and Coatings Technology 291 (2016) 205-215. https://doi.org/10.1016/j.surfcoat.2016.02.042

S. Y. Kim, Y. K. Kim, M. H. Ryu, T. S. Bae, M. H. Lee, Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution, Scientific Reports 7 (2017) 9061. https://doi.org/10.1038/s41598-017-08242-0

D. Shikha, M. Shahid, S. K. Sinha, Improvement in adhesion of HAP deposited on alumina after Ar+ ions implantation and its physiochemical properties, Surfaces and Interfaces 19 (2020) https://doi.org/10.1016/j.surfin.2020.100485

A. Singh, G. Singh, V. Chawla, Mechanical properties of vacuum plasma sprayed reinforced hydroxyapatite coatings on Ti-6Al-4V alloy, Journal of the Australian Ceramic Society 53 (2017) 795-810. https://doi.org/10.1007/s41779-017-0093-z

S. Tailor, N. Vashishtha, A. Modi, S. C. Modi, High-Performance Al2O3 Coating by Hybrid-LVOF (Low-Velocity Oxyfuel) Process, Journal of Thermal Spray Technology 29 (2020) 1134-1143. https://doi.org/10.1007/s11666-020-01033-6

D. Dey, K. S. Bal, A. K. Singh, A. Roy Choudhury, Hardness and wear behaviour of multiple component coating on Ti-6Al-4V substrate by laser application, Optik (Stuttg) 202 (2020) 163555. https://doi.org/10.1016/j.ijleo.2019.163555

M. L. Vera, M. R. Rosenberger, C. E. Schvezov, and A. E. Ares, Fabrication of TiO2 crystalline coatings by combining Ti-6Al-4V anodic oxidation and heat treatments, International Journal of Biomaterial 2015 (2015) https://doi.org/10.1155/2015/395657

A. Ganvir, S. Nagar, N. Markocsan, K. Balani, Deposition of hydroxyapatite coatings by axial plasma spraying: Influence of feedstock characteristics on coating microstructure, phase content, and mechanical properties, Journal of the European Ceramic Society 41 (2021) 4637-4649. https://doi.org/10.1016/j.jeurceramsoc.2021.02.050

V. Dutta, L. Thakur, B. Singh, H. Vasudev, A Study of Erosion-Corrosion Behaviour of Friction Stir-Processed Chromium-Reinforced NiAl Bronze Composite, Materials 15 (2022). https://doi.org/10.3390/ma15155401

I. Gotman, Characteristics of metals used in implants, Journal of Endourology 11 (1997) 383-389. https://doi.org/10.1089/end.1997.11.383

Published

02-08-2024 — Updated on 02-08-2024

Issue

Section

Advanced coatings

How to Cite

Bioactivity and corrosion analysis of thermally sprayed hydroxyapatite based coatings: Review paper. (2024). Journal of Electrochemical Science and Engineering, 14(4), 419-439. https://doi.org/10.5599/jese.2340

Similar Articles

1-10 of 342

You may also start an advanced similarity search for this article.