Assessment of poly(vinylidene fluoride) copolymer blends as recent binders for lithium-ion batteries with LiMn2O4 cathode
Original scientific paper
DOI:
https://doi.org/10.5599/jese.2213Keywords:
Li-ion cell, active materials, electrode microstructure , mechanical properties , battery C ratingAbstract
The binder composition of battery electrodes can be linked to their performance in different ways due to the remarkable impact of binder on the external properties of the battery. Even being electrochemically passive, the binding material in lithium-ion polymer battery electrodes significantly improves the operation metrics, including the cycle balance, capacity, and efficiency rate. This study compares the performance of LiMn2O4 cathode material, taking into consideration poly(vinylidene fluoride) (PVDF) binder mixed with other blended copolymers, such as polypropylene carbonate-poly(trimethylene carbonate) (PPC-PTMC) and polyethene-poly(ethylene oxide) (PE-PEO). As a mostly amorphous polymer, the PPC-PTMC copolymer is seen to have outstanding mechanical qualities that help to improve the adhesion and structural homogeneity of electrode material. Conversely, PE-PEO copolymer offers improved ionic conductivity within the electrode and binder when used as a polymeric surface-active agent for conductive additives. Compared to unblended PVDF binder, the improved structure homogeneity of the electrode results in remarkably better capacity, efficiency rate, and cycle performance. These results suggest that modifying the PVDF binder by copolymer combination is a workable way to enhance the homogeneity of electrode composites and interfaces.
Downloads
References
M. Dirican, M. Yanilmaz, K. Fu, O. Yildiz, H. Kizil, Y. Hu, X. Zhang, Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, Journal of The Electrochemical Society 161(14) (2014) A2197-A2203. https://doi.org/10.1149/2.0811414jes
G. Gao, Q. Zhang, K. Wang, H. Song, P. Qui, D. Cui, Axial compressive α-Fe2O3 microdisks prepared from CSS template for potential anode materials of lithium ion batteries, Nano Energy 5 (2013) 1010-1018. https://doi.org/10.1016/j.nanoen.2013.03.023
J. Sun, C. Lv, F. Lv, S. Chen, D. Li, Z. Guo, W. Han, D. Yang, S. Guo, Tuning the shell number of multi-shelled metal oxide hollow fibers for optimized lithium-ion storage, ACS Nano 11(6) (2017) 6186-6193. https://doi.org/10.1021/acsnano.7b02275
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today 18 (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
N.A Salleh, S. Kheawhom, N.A.A. Hamid, W. Rahiman, A.A. Mohamad, Electrode polymer binders for supercapacitor applications: A review, Journal of Materials Research and Technology 23 (2023) 3470-3490. https://doi.org/10.1016/j.jmrt.2023.02.013
N. Wang, S. Su, J. Yang, Y, Nuli, Effects of binders on the electrochemical performance of rechargeable magnesium batteries, Journal of Power Sources 341 (2017) 219-229. https://doi.org/10.1016/j.jpowsour.2016.12.003
J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. L. Ridgway, J. Q. Wang, V. S. Battaglia, A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells, Journal of Power Sources 196 (2011) 7707-7714. https://doi.org/10.1016/j.jpowsour.2011.04.043
J. Song, M. Zhou, R. Yi, T. Xu, M. L. Gordin, D. Tang, Z. Yu, M. Regula, D. Wang, Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries, Advanced Functional Materials 24(37) (2014) 5904-5910. https://doi.org/10.1002/adfm.201401269
P. Cao, Y. Pan, S. Gao, F. Sun, H. Yang, P.-F. Cao, Polymer binders constructed through dynamic non-covalent bonds for high-capacity silicon-based anodes, Chemistry - A European Journal 25(47) (2019) 10976-10994. https://doi.org/10.1002/chem.201900988
S. Gao, F. Sun, A. Brady, Y. Pan, A. Erwin, D. Yang, V. Tsukruk, A. G. Stack, T. Saito, H. Yang, P. Cao, Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries, Nano Energy 73 (2020) 104804. https://doi.org/10.1016/j.nanoen.2020.104804
K. L. Browning, R. L. Sacci, M. Doucet, J. F. Browning, J. R. Kim, G. M. Veith, The Study of the Binder Poly(acrylic acid) and its role in concomitant Solid-Electrolyte Interphase Formation on Si Anodes, ACS Applied Materials & Interfaces 12 (8) (2020) 10018-10030. https://doi.org/10.1021/acsami.9b22382
L. Qiu, Z. Shao, D. Wang, F. Wang, J. Wang, Novel polymer Li-ion binder carboxymethyl cellulosederivative enhanced electrochemical performance for Li-ion batteries, Carbohydrate Polymers 12 (2014) 532-538. https://doi.org/10.1016/j.carbpol.2014.06.034
K. Kruk, K. Winnicka. Alginates Combined with Natural Polymers as Valuable drug.delivery Platforms, Marine Drugs 21(1) (2022) 11. https://doi.org/10.3390/md21010011
M. Zhang, L. Wang, H. Xu, X. Hong, Y. Song, Polyimides as Promising Materials for Lithium-Ion Batteries, Nano-Micro Letters 15 (2023) 135. https://doi.org/10.1007/s40820-023-01104-7
P. S. Jadhav, G. M. Joshi, R. R. Deshmukh, Preparation and characterization of polyacrylonitrile/nitrocellulose engineering blend, Journal of Applied Polymer Science 140(30) (2023) e54092. https://doi.org/10.1002/app.54092
T.S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. H. Kadhum, A. B. Mohamad, A. A. Al-Amiery, Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites, Molecules 20(12) (2015) 22833-22847. https://doi.org/10.3390/molecules201219884
H. Zhong, J. Lu, A. He, M. Sun, J. He, L. Zhang, Carboxymethyl chitosan/poly(ethylene oxide) water soluble binder Challenging application for 5V LiNi0.5Mn1.5O4 cathode, Journal of Materials Science & Technology 33(8) (2017) 763-767. https://doi.org/10.1016/j.jmst.2017.01.019
S. Kaur, S. Santra, Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithium-Ion Batteries, ChemistryOpen 11(2) (2022) e202100209. https://doi.org/10.1002/open.202100209
Y. Pan, S. Ge, Z. Rashid, S. Gao, A. Erwin, V. Tsukruk, K.J. Vogiatzis, A.P. Sokolov, H. Yang, P.-F. Cao, Adhesive Polymers as Efficient Binders for High- Capacity Silicon Electrodes, ACS Applied Energy Materials 3(4) (2020) 3387-3396. https://doi.org/10.1021/acsaem.9b02420
M. Dahbi, T. Nakano, N. Yabuuchi, T. Ishikawa, K. Kubota, M. Fukunishi, S. Shibahara, J. Y. Son, Y. T. Cui, H. Oji, S. Komaba, Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochemistry Communications 44 (2014) 66-69. https://doi.org/10.1016/j.elecom.2014.04.014
M. H. T. Nguyen, E.-S. Oh, Application of a new acrylonitrile/butylacrylate water-based binder for negative electrodes of lithium-ion batteries, Electrochemistry Communications 13 (2013) 45-48. https://doi.org/10.1016/j.elecom.2013.07.042
I. Dobryden, C. Montanari, D. Bhattacharjya, J. Aydin, A. Ahniyaz,, Bio-Based Binder Development for Lithium-Ion Batteries, Materials 16(16) (2023) 5553. https://doi.org/10.3390/ma16165553
H. Park, S. H. Lee, Review on Interfacial Bonding Mechanism of Functional Polymer Coating on Glass in Atomistic Modeling Perspective, Polymers 13(14) (2021) 2244. https://doi.org/10.3390/polym13142244
V. Khomenko, O. Chernysh, V. Barsukov, V. Tverdokhlib, A. Berezovskij, V. Slobodianyk Composite materials based on water-soluble binders for electrochemical capacitors. Energy facilities: management and design and technological innovations. Kharkiv: PC Technology Center 1 (2022) 76-138. https://doi.org/10.15587/978-617-7319-63-3.ch3
G. Yoo, S. Kim, C. Chanthad, M. Cho, Y. Lee, Elastic rubber-containing multifunctional binder for advanced Li-S batteries, Chemical Engineering Journal 405 (2021) 126628. https://doi.org/10.1016/j.cej.2020.126628
M. Zhang, A. Nautiyal, H. Du, Z. Wei, X. Zhang, R. Wang, Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor, Electrochimica Acta 376 (2021) 138037. https://doi.org/10.1016/j.electacta.2021.138037
J. Tong, C. Han, X. Hao, X. Hao, X. Qin, B. Li, Conductive Polyacrylic Acid-Polyaniline as a Multifunctional Binder for Stable Organic Quinone Electrodes of Lithium-Ion Batteries, ACS Applied Materials & Interfaces 12(35) (2020) 39630-39638. https://doi.org/10.1021/acsami.0c10347
J. Lv, Z. Liu, L. Zhang, K. Li, S. Zhang, H. Xu, Z. Mao, H. Zhang, J. Chen, G. Pan, Multifunctional polypyrrole and rose-like silver flower-decorated E-textile with outstanding pressure/strain sensing and energy storage performance, Chemical Engineering Journal 427 (2022) 130823.https://doi.org/10.1016/j.cej.2021.130823
A. M. Battaglia, P. Pahlavanlu, E. Grignon, S. Y. An, D. S. Seferos, High Active Material Loading in Organic Electrodes Enabled by a Multifunctional Binder, ACS Applied Materials & Interfaces 14(37) (2022) 42298-42307. https://doi.org/10.1021/acsami.2c10070
H. Park, S. Han, H. Tak, J. Kim, K. Roh, D. S. Jung, T. Song, P. J., Kim, J. Choi A multifunctional network binder enables stable and high performance of silicon-based anode in lithium-ion battery, Journal of Power Sources 574 (2023) 233159. https://doi.org/10.1016/j.jpowsour.2023.233159
X. Liang, X. Wu, Y. Wang, X. Li, Q. Gai, J. Mao, Study on Preparation and Performance of PEO- PVDF Composite Binder for Lithium ion Batteries, International Journal of Electrochemical Science 15(9) (2020) 8471-8478. https://doi.org/10.20964/2020.09.79
X. Wang, S. Liu, Y. Zhang, H. Wang, A. A. Aboalhassan, G. Li, G. Xu, C. Xue, J. Yu, J. Yan, B. Ding, Highly Elastic Block Copolymer Binders for Silicon Anodes in Lithium-Ion Batteries, ACS Applied Materials & Interfaces 12(34) (2020) 38132-38139. https://doi.org/10.1021/acsami.0c10005
L. Zhang, X. Wu, W. Qian, K. Pan, X. Zhang, L. Li, M. Jia, S. Zhang, Exploring More Functions In Binders for Lithium Batteries. Electrochemical Energy Reviews 6 (2023) 36. https://doi.org/10.1007/s41918-023-00198-2
A. Gupta, R. Badam, A. Nag, T. Kaneko, N. Matsumi, Bis-imino-acenaphthenequinone Paraphenylene-Type Condensation Copolymer Binder for Ultralong Cyclable Lithium-Ion Rechargeable Batteries, ACS Applied Energy Materials, 4 (2021) 2231-2240. https://doi.org/10.1021/acsaem.0c02742
L. Chen, D. Pan, H. He, Morphology Development of Polymer Blend Fibers along Spinning Line, Fibers 7(4) (2019) 35. https://doi.org/10.3390/fib7040035
T. Pisarenko, N. Papež, D. Sobola, S. Ţălu, K. Částková, P. Škarvada, R. Macků, E. Ščasnovič, J. Kaštyl, Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel, Polymers 14(3) (2022) 593. https://doi.org/10.3390/polym14030593
S. C. Lee, K. J. Kim, S. W. Kang, C. Kim, Microstructural analysis and structure-property relationship of poly(glycolide-co-1,3-trimethylene carbonate), Polymer 46(19) (2005) 7953-7960. https://doi.org/10.1016/j.polymer.2005.07.014
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.