Facile one-pot synthesis of CuO nanospheres: Sensitive electrochemical determination of hydrazine in water effluents

Original scientific paper

  • N. M. Abdul Khader Jailani Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam - 625533, Tamilnadu, India https://orcid.org/0000-0002-0915-4618
  • M. Chinnasamy Department of Chemistry, Theni College of Arts & Science, Veerapandi - 625534, Tamilnadu, India
  • N. S. K. Gowthaman Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam - 625533, Tamilnadu, India
Keywords: CuO nanospheres, electrochemical sensor, voltammetry, environmental hazard
Graphical Abstract


Hydrazine (HZ) is massively used in several industrial applications. Adsorption of HZ through human skin creates carcinogenicity by disturbing the human organ system and thus, the quantification of HZ levels in environmental water samples is highly needed. The present work describes the short-term development of copper oxide nanospheres (CuO NS) by one-step wet chemical approach and their implementation on glassy carbon electrode (GCE) for the sensitive and selective quantification of the environmentally hazardous HZ. The CuO NS formation was identified by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and UV-visible spectroscopy. SEM images exhibited the uniform CuO NS with an average size of 85 nm. The linker-free CuO NS modified GCE offered high electrocatalytic activity against HZ determination by showing the linear range determination in the range of 0.5 to 500 µM, with the detection limit of 63 nM (S/N=3), and sensitivity of 894.28 µA mM-1 cm-2. Further, the developed HZ sensor displayed excellent repeatability and reproducibility and was successfully exploited for the determination of HZ in real environmental samples, implying that GCE/CuO-NS is a confident and low-cost electrochemical platform for HZ determination.


Download data is not yet available.


G. Maduraiveeran, M. Sasidharan, W. Jin, Progress in Materials Science 106 (2019) 100574. https://doi.org/10.1016/j.pmatsci.2019.100574

Y. Jia, X. Yi, Z. Li, L. Zhang, B. Yu, J. Zhang, X. Wang, X. Jia, Talanta 219 (2020) 121308. https://doi.org/10.1016/j.talanta.2020.121308

C-H. Tsai, P-H. Fei, C-M. Lin, S-L. Shiu, Coatings 8 (2018) 21. https://doi.org/10.3390/coatings8010021

T. J. Richardson, J. L. Slack, M. D. Rubin, Electrochimica Acta 46 (2001) 2281-2284. https://doi.org/10.1016/S0013-4686(01)00397-8

N. S. K. Gowthaman, S. A. John, CrystEngComm 18 (2016) 8696-8708. https://doi.org/10.1039/C6CE01846G

K. Y. Hwa, P. Karuppaiah, N. S. K. Gowthaman, V. Balakumar, S-hankar, H. N. Lim, Ultrasonics Sonochemistry 58 (2019) 104649. https://doi.org/10.1016/j.ultsonch.2019.104649

M. M. Alam, M. M. Rahman, A. M. Asiri, M. A. Fazal, Journal of Materials Science: Materials in Electronics 32 (2021) 5259-5273. https://doi.org/10.1007/s10854-021-05257-2

K. Sekar, C. Chuaicham, B. Vellaichamy, W. Li, W. Zhuang, X. Lu, B. Ohtani, K. Sasaki, Applied Catalysis B: Environmental 294 (2021) 120221. https://doi.org/10.1016/j.apcatb.2021.120221

S. Steinhauer, E. Brunet, T. Maier, G.C. Mutinati, A. Köck, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Sensors and Actuators B: Chemical 187 (2013) 50-57. https://doi.org/10.1016/j.snb.2012.09.034

S. K. Shinde, H. M. Yadav, G. S. Ghodake, A. A. Kadam, V. S. Kumbhar, J. Yang, K. Hwang, A. D. Jagadale, S. Kumar, D. Y. Kim, Colloids and Surfaces B: Biointerfaces 181 (2019) 1004-1011. https://doi.org/10.1016/j.colsurfb.2019.05.079

A. N. S. Rao, V. T. Venkatarangaiah, Journal of Electrochemical Science and Engineering 4 (2014) 97-110. https://doi.org/10.5599/jese.2014.0063

M. F. Shabik, M. M. Hasan, K. A. Alamry, M. M. Rahman, Y. Nagao, M. A. Hasnat, Journal of Electroanalytical Chemistry 897 (2021) 115592. https://doi.org/10.1016/j.jelechem.2021.115592

M. M. Rahman, S. B. Khan, H. M. Marwani, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi, Talanta 104 (2013) 75-82. https://doi.org/10.1016/j.talanta.2012.11.031

J. D. Lović, Journal of Electrochemical Science and Engineering 12(2) (2022) 275-282. https://doi.org/10.5599/jese.1166

M. M. Rahman, V. G. Alfonso, F. Fabregat-Santiago, J. Bisquert, A. M. Asiri, A. A. Alshehri, H. A. Albar, Microchimica Acta 184 (2017) 2123-2129. https://doi.org/10.1007/s00604-017-2228-x

N. S. K. Gowthaman, S. Shankar, S. A. John, ACS Sustainable Chemistry & Engineering 6 (2018) 17302-17313. https://doi.org/10.1021/acssuschemeng.8b04777

M. M. Rahman, J. Ahmed, A. M. Asiri, I. A. Siddiquey, M. A. Hasnat, RSC Advances 6 (2016) 90470-90479. https://doi.org/10.1039/C6RA08772H

H. Akhter, J. Murshed, M.A. Rashed, Y. Oshim, Y. Nagao, M. M. Rahman, A. M. Asiri, M.A. Hasnat, M. N. Uddin, I.A. Siddiquey, Journal of Alloys and Compounds 698 (2017) 921-929. https://doi.org/10.1016/j.jallcom.2016.12.266

M. M. Rahman, M. M. Alam, A. M. Asiri, New Journal of Chemistry 42 (2018) 10263-10270. https://doi.org/10.1039/C8NJ01750F

M. M. Alam, A. M. Asiri, M. M. Rahman, Materials Chemistry and Physics 243 (2020) 122658. https://doi.org/10.1016/j.matchemphys.2020.122658

M. M. Rahman, B. M. Abu-Zied, A. M. Asiri, RSC Advances 7 (2017) 21164-21174. https://doi.org/10.1039/C7RA00952F

Environmental Health Criteria 68: Hydrazine; World Health Organization (WHO), Geneva, Switzerland, (1987) 1−89. ISBN 92 4 154268 3

M. A. Subhan, P. C. Saha, J. Ahmed, A. M. Asiri, M. Al-Mamun, M. M. Rahman, Materials Advances 1 (2020) 2831-2839. https://doi.org/10.1039/D0MA00629G

M. M. Rahman, S. B. Khan, A. M. Asiri, H. M. Marwani, A. H. Qusti, Composites Part B: Engineering 54 (2013) 215-223. https://doi.org/10.1016/j.compositesb.2013.05.018

M. Faisal, S. B. Khan, M. M. Rahman, A. Jamal, A. Umar, Materials Letters 65 (2011) 1400-1403. https://doi.org/10.1016/j.matlet.2011.02.013

S. B. Khan, M. Faisal, M. M. Rahman, I. A. Abdel-Latif, A. A. Ismail, K. Akhtar, A. Al-Hajry, A. M. Asiri, K. A. Alamry, New Journal of Chemistry 37 (2013) 1098-1104. https://doi.org/10.1039/C3NJ40928G

M. M. Hussain, A. M. Asiri, M. M. Rahman, New Journal of Chemistry 44 (2020) 9775-9787. https://doi.org/10.1039/D0NJ01715A

A. M. Asiri, W. A. Adeosun, M. M. Rahman, Microchemical Journal 159 (2020) 105527. https://doi.org/10.1016/j.microc.2020.105527

R. A. Soomro, Q. Baloach, A. Tahira, Z. H. Ibupoto, G. Q. Khaskheli, Sirajuddin, V. K. Deewani, K. R. Hallam, K. Rajar, M. Willander, Microsystem Technologies 23 (2017) 731-738. https://doi.org/10.1007/s00542-015-2726-x

N. Teymoori, J. B. Raoof, M. A. Khalilzadeh, R. Ojani, Journal of the Iranian Chemical Society 15 (2018) 2271-2279. https://doi.org/10.1007/s13738-018-1416-x

L. Wang, T. Meng, H. Jia, Y. Feng, T. Gong, H. Wang, Y. Zhang, Journal of Colloid and Interface Science 549 (2019) 98-104. https://doi.org/10.1016/j.jcis.2019.04.063

Z. Zhao, W. Wang, W. Tang, Y. Xie, Y. Li, J. Song, S. Zhuiykov, J. Hu, W. Gong, Ionics 26 (2020) 2599-2609. https://doi.org/10.1007/s11581-019-03305-w

Z. Guo, M.L. Seol, M. S. Kim, J. H. Ahn, Y. K. Choi, J. H. Liu, X. J. Huang, Nanoscale 4 (2012) 7525-7531. https://doi.org/10.1039/C2NR32556J

K. Ramachandran, K. Babu, G. G. Kumar, A. R. Kim, D. J. Yoo, Science of Advanced Materials 7 (2015) 329-336. https://doi.org/10.1166/sam.2015.2025

G. Karim-Nezhad, R. Jafarloo, P. S. Dorraji, Electrochimica Acta 54 (2009) 5721–5726. https://doi.org/10.1016/j.electacta.2009.05.019

Z. Zhao, Y. Wang, P. Li, S. Sang, W. Zhang, J. Hu, K. Lian, Analytical Methods 7 (2015) 9040-9046. https://doi.org/10.1039/C5AY02122G

N. S. K. Gowthaman, S. A. John, CrystEngComm 19 (2017) 5369-5380. https://doi.org/10.1039/C7CE01044C

N. S. K. Gowthaman, H. N. Lim, V. Balakumar, S. Shankar, Ultrasonics Sonochemistry 61 (2020) 104828. https://doi.org/10.1016/j.ultsonch.2019.104828

V. Fragkou, Y. Ge, G. Steiner, D. Freeman, N. Bartetzko, A. P. F. Turner, International Journal of Electrochemical Science 7 (2012) 6214-6220. http://electrochemsci.org/papers/vol7/7076214.pdf

N. S. K. Gowthaman, S. A. John, RSC Advances 5 (2015) 42369-42375. https://doi.org/10.1039/C5RA06537B

W. Wang, Z. Zhao, H. Yang, P. Li, Z. Yu, W. Zhang, J. Shi, J. Hu, Y. Chen, Journal of Materials Science 55 (2020) 9470-9482. https://doi.org/10.1007/s10853-020-04684-6

Electrochemical Science