Modeling and synthesis of carbon-coated LiMnPO4 cathode material: Experimental investigation and optimization using response surface methodology

Original scientific paper

Authors

  • Redouan El-Khalfaouy Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B.P. 1223,Taza, Morocco and Materials, Processes, Catalysis and Environment Laboratory, High School of Technology, Sidi Mohamed Ben Abdellah University, BP 2427, Fez, Morocco https://orcid.org/0000-0002-4492-1296
  • Khadija Khallouk Materials, Processes, Catalysis and Environment Laboratory, High School of Technology, Sidi Mohamed Ben Abdellah University, BP 2427, Fez, Morocco https://orcid.org/0000-0002-4919-8594
  • Alae Elabed Microbial Biotechnology Laboratory, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, BP. 2202, Fez, Morocco https://orcid.org/0000-0003-0844-6413
  • Abdellah Addaou Materials, Processes, Catalysis and Environment Laboratory, High School of Technology, Sidi Mohamed Ben Abdellah University, BP 2427, Fez, Morocco
  • Ali Laajeb Materials, Processes, Catalysis and Environment Laboratory, High School of Technology, Sidi Mohamed Ben Abdellah University, BP 2427, Fez, Morocco
  • Ahmed Lahsini Materials, Processes, Catalysis and Environment Laboratory, High School of Technology, Sidi Mohamed Ben Abdellah University, BP 2427, Fez, Morocco

DOI:

https://doi.org/10.5599/jese.1191

Keywords:

Response surface methodology, olivine structure, solvothermal synthesis, PEG-10000, lithium-ion batteries
Graphical Abstract

Abstract

Nanostructured LiMnPO4 cathode materials for lithium-ion batteries (LIBs) have been successfully prepared by a modified solvothermal method under controlled conditions. Polyethylene glycol (PEG-10000) was used as a solvent to optimize the particle size/mor­phology and as a carbon conductive matrix. In order to investigate the effect of synthesis parameters such as concentration of PEG-10000, reaction time and reaction temperature on the LiMnPO4 phase purity, Response surface methodology was carried out to find variations in purity results across the composition. The purity of all materials was checked using HighScore software by comparing the matched lines score to ones of reference data. As a result, it has been found that the pure phospho-olivine material LiMnPO4 can be syn­thesized using the following optimum conditions: PEG concentration = 0.1 mol l-1, reaction time = 180 min, and reaction temperature = 250 °C. The as-prepared LiMnPO4 under opti­mum conditions delivered an initial discharge capacity of 128.8 mAh g-1 at 0.05 C‑rate. The present work provides insights and suggestions for optimizing synthesis conditions of this material, which has been considered the next promising cathode candidate for high-energy lithium-ion batteries.

Downloads

Download data is not yet available.

References

K. Saravanan, P. Balaya, M. V. Reddy, B. V. R. Chowdari, J. J. Vittal, Energy and Environmental Science 3(4) (2010) 457-464. https://doi.org/10.1039/b923576k

J. Fan, J. Chen, Y. Chen, H. Huang, Z. Wei, M. Zheng, Q. Dong, Journal of Materials Chemistry A 2(14) (2014) 4870-4873. https://doi.org/10.1039/C3TA15210C

B. Kang, G. Ceder, Nature 458(7235) (2009) 190-193. https://doi.org/10.1038/nature07853

S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Progress in Natural Science: Materials International 28(6) (2018) 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002

J. Zhang, S. Luo, L. Chang, S. Bao, J. Liu, Electrochimica Acta 193 (2016) 16-23. https://doi.org/10.1016/j.electacta.2016.02.018

A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Journal of the Electrochemical Society 144(4) (1997) 1188-1194. https://doi.org/10.1149/1.1837571

M. K. Devaraju, I. Honma, Advanced Energy Materials 2(3) (2012) 284-297. https://doi.org/10.1002/aenm.201100642

J. Wolfenstine, J. Allen, Journal of Power Sources 142(1–2) (2005) 389–90. https://doi.org/10.1016/j.jpowsour.2004.11.024

J. Yang, J. J. Xu, Journal of the Electrochemical Society 153(4) (2006) A716. https://doi.org/10.1149/1.2168410

K. Amine, H. Yasuda, M. Yamachi, Electrochemical and Solid-State Letters 3(4) (2000) 178-179. https://doi.org/10.1149/1.1390994

M. S. Kim, J. P. Jegal, K. C. Roh, K. B. Kim, Journal of Materials Chemistry A 2(27) (2014) 10607-10613. https://doi.org/10.1039/C4TA01197J

C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon, C. Masquelier, Journal of the Electrochemical Society 152(5) (2005) 913-921. https://doi.org/10.1149/1.1884787

P. Nie, L. Shen, F. Zhang, L. Chen, H. Deng, X. Zhang, CrystEngComm. 14(13) (2012) 4284-4288. https://doi.org/10.1039/C2CE25094B

Z. X. Nie, C. Y. Ouyang, J. Z. Chen, Z. Y. Zhong, Y. L. Du, D. S. Liu, S. Q. Shi, M.S . Lei, Solid State Communications 150(1–2) (2010) 40-44. https://doi.org/10.1016/j.ssc.2009.10.010

S. Zhong, Y. Xu, Y. Li, H. Zeng, W. Li, J. Wang, Rare Metals 31(5) (2012) 474-478. https://doi.org/10.1007/s12598-012-0542-3

H. C. Dinh, S. Il Mho, Y. Kang, I. H. Yeo, Journal of Power Sources 244 (2013) 189-195. https://doi.org/10.1016/j.jpowsour.2013.01.191

M. Pivko, M. Bele, E. Tchernychova, N. Z. Logar, R. Dominko, M. Gaberscek, Chemistry of Materials 24(6) (2012) 1041-1047.https://doi.org/10.1021/cm203095d

J. Yoshida, M. Stark, J. Holzbock, N. Hüsing, S. Nakanishi, H. Iba, H. Abe, M. Naito, Journal of Power Sources 226 (2013) 122-126. https://doi.org/10.1016/j.jpowsour.2012.09.081

P. Barpanda, K. Djellab, N. Recham, M. Armand, J. M. Tarascon, Journal of Materials Chemistry 21(27) (2011) 10143-10152. https://doi.org/10.1039/C0JM04423G

Z. Bakenov, I. Taniguchi, Journal of Power Sources 195(21) (2010) 7445-7451. https://doi.org/10.1016/j.jpowsour.2010.05.023

T. N.L. Doan, Z. Bakenov, I. Taniguchi, Advanced Powder Technology 21(2) (2010) 187-196. https://doi.org/10.1016/j.apt.2009.10.016

T. N. L. Doan, I. Taniguchi, Journal of Power Sources 196(3) (2011) 1399-1408. https://doi.org/10.1016/j.jpowsour.2010.08.067

L. Damen, F. De Giorgio, S. Monaco, F. Veronesi, M. Mastragostino, Journal of Power Sources 218 (2012) 250-253. https://doi.org/10.1016/j.jpowsour.2012.06.090

R. El Khalfaouy, S. Turan, K. B. Dermenci, U. Savaci, A. Addaou, A. Laajeb, A. Lahsini, Ceramics International 45(14) (2019) 17688-17695. https://doi.org/10.1016/j.ceramint.2019.05.336.

R. El Khalfaouy, A. Addaou, A. Laajeb, A. Lahsini, Journal of Alloys and Compounds 775 (2019) 836-844. https://doi.org/10.1016/j.jallcom.2018.10.161

R. El-Khalfaouy, S. Turan, M. A. Rodriguez, K. B. Dermenci, U. Savacı, A. Addaou, A. Laajeb, A. Lahsini, Journal of Applied Electrochemistry 51(4) (2021) 681-689. https://doi.org/10.1007/s10800-020-01528-8

Z. Bakenov, I. Taniguchi, Electrochemistry Communications 12(1) (2010) 75-78. https://doi.org/10.1016/j.elecom.2009.10.039

N.-H. Kwon, T. Drezen, I. Exnar, I. Teerlinck, M. Isono, M. Graetzel, Electrochemical and Solid-State Letters 9(6) (2006) A277. https://doi.org/10.1149/1.2191432

D. Di, T. Hu, J. Hassoun, Journal of Alloys and Compounds 693 (2017) 730-737. https://doi.org/10.1016/j.jallcom.2016.09.193

S. Luo, Y. Sun, S. Bao, J. Li, J. Zhang, T. Yi, Journal of Electroanalytical Chemistry 832 (2019) 196-203. https://doi.org/10.1016/j.jelechem.2018.10.062

S.F. Yang, P.Y. Zavalij, M.S. Whittingham, Electrochemistry Communications 3(9) (2001) 505-508. https://doi.org/10.1016/S1388-2481(01)00200-4

G. Chen, J. D. Wilcox, T. J. Richardson, Electrochemical and Solid-State Letters 11(11) (2008) A190. https://doi.org/10.1149/1.2971169

K. Zhu, W. Zhang, J. Du, X. Liu, J. Tian, H. Ma, S. Liu, Z. Shan, Journal of Power Sources 300 (2015) 139-146. https://doi.org/10.1016/j.jpowsour.2015.08.065

R. El Khalfaouy, A. Elabed, A. Addaou, A. Laajeb, A. Lahsini, Arabian Journal for Science and Engineering 44 (2019) 123-129. https://doi.org/10.1007/s13369-018-3248-5

Y. Cao, J. Duan, G. Hu, F. Jiang, Z. Peng, Electrochimica Acta 98 (2013) 183-189. https://doi.org/10.1016/j.electacta.2013.03.014

R. El Khalfaouy, A. Addaou, A. Laajeb, A. Lahsini, International Journal of Hydrogen Energy 44(33) (2019) 18272-18282. https://doi.org/10.1016/j.ijhydene.2019.05.129

S. Vedala, M. Sushama, Materials Today: Proceedings 5(1) (2018) 1649-1656. https://doi.org/10.1016/j.matpr.2017.11.259

T. Drezen, N. H. Kwon, P. Bowen, I. Teerlinck, M. Isono, I. Exnar, Journal of Power Sources 174(2) (2007) 949-953. https://doi.org/10.1016/j.jpowsour.2007.06.203

N. N. Bramnik, H. Ehrenberg, Journal of Alloys and Compounds 464(1–2) (2008) 259-264. https://doi.org/10.1016/j.jallcom.2007.09.118

J. Su, B.Q. Wei, J.P. Rong, W. Y. Yin, Z. X. Ye, X. Q. Tian, L. Ren, M. H. Cao, C. W. Hu, Journal of Solid State Chemistry 184(11) (2011) 2909-2919. https://doi.org/10.1016/j.jssc.2011.08.042

S. L. Yang, R. G. Ma, M. J. Hu, L. J. Xi, Z. G. Lu, C. Y. Chung, Journal of Materials Chemistry 22(48) (2012) 25402-25408. https://doi.org/10.1039/C2JM34193J

W. Zhang, Z. Shan, K. Zhu, S. Liu, X. Liu, J. Tian, Electrochimica Acta 153 (2015) 385-392. https://doi.org/10.1016/j.electacta.2014.12.012

C. M. Borror, Journal of Quality Technology 39(3) (2007) 297. https://doi.org/10.1080/00224065.2007.11917695

M. Mir, S. M. Ghoreishi, Chemical Engineering and Technology 38(5) (2015) 835-843. https://doi.org/10.1002/ceat.201300328

L. Cesar, S. Garcia-Segura, N. Bocchi, E. Brillas, Applied Catalysis B 103(1–2) (2011) 21-30. https://doi.org/10.1016/j.apcatb.2011.01.003

J. Herney-Ramirez, M. Lampinen, M. A. Vicente, C. A. Costa, L. M. Madeira, Industrial and Engineering Chemistry Research 47(2)(2008) 284-294.https://doi.org/10.1021/ie070990y

A. Long, H. Zhang, Y. Lei, Separation and Purification Technology 118 (2013) 612-619. https://doi.org/10.1016/j.seppur.2013.08.001

T. Xu, Y. Liu, F. Ge, L. Liu, Y. Ouyang, Applied Surface Science 280 (2013) 926-932. https://doi.org/10.1016/j.apsusc.2013.05.098

H. Xu, S. Qi, Y. Li, Y. Zhao, J. W. Li, Environmental Science and Pollution Research 20 (2013) 5764-5772. https://doi.org/10.1007/s11356-013-1578-0

J. Wu, H. Zhang, N. Oturan, Y. Wang, L. Chen, M. A. Oturan, Chemosphere 87(6) (2012) 614-620. https://doi.org/10.1016/j.chemosphere.2012.01.036

R. Muruganantham, M. Sivakumar, R. Subadevi, Journal of Power Sources 300 (2015) 496-506. https://doi.org/10.1016/j.jpowsour.2015.09.103

Y. Hong, Z. Tang, S. Wang, W. Quan, Z. Zhang, Journal of Materials Chemistry A 3(19) (2015) 10267-10274. https://doi.org/10.1039/C5TA01218J

S.-Y. Cao,L.-J. Chang,S.-H. Luo ,X.-L. Bi, A.-L. Wei, J.-N. Liu, Particle and Particle Systems Characterization 39(2) (2021) 2100203. https://doi.org/10.1002/ppsc.202100203

D. Fujimoto, Y. Lei, Z.-H. Huang, F. Kang, J. Kawamura, International Journal of Electrochemistry 2014 (2014) 768912. https://doi.org/10.1155/2014/768912

D. Choi, D. Wang, I. T. Bae, J. Xiao, Z. Nie, W. Wang, V. V. Viswanathan, Y. J. Lee, J. G. Zhang, G. L. Graff, Z. Yang, J. Liu, Nano Letters 10(8) (2010) 2799-2805. https://doi.org/10.1021/¬nl1007085

Published

25-01-2022

How to Cite

El-Khalfaouy, R., Khallouk, K., Elabed, A., Addaou, A., Laajeb, A., & Lahsini, A. (2022). Modeling and synthesis of carbon-coated LiMnPO4 cathode material: Experimental investigation and optimization using response surface methodology: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(2), 305–316. https://doi.org/10.5599/jese.1191

Issue

Section

Electrochemical Science