Development of highly stable conductive multiwalled carbon nanotube ink using covalent and non-covalent functionalization for electrochemical sensors

Authors

  • Ana Elisa Ferreira Oliveira Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas CEP 36301-160, Brazil
  • Arnaldo César Pereira Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Praça Dom Helvécio 74, Fábricas CEP 36301-160, Brazil https://orcid.org/0000-0003-2864-3756
  • Lucas Franco Ferreira Laboratório de Eletroquímica e Nanotecnologia Aplicada, Universidade Federal dos Vales do Jequitinhonha e Mucuri, MGT 367, Km 583, Alto da Jacuba, Diamantina, MG 39100-000, Brazil https://orcid.org/0000-0002-5431-0069

DOI:

https://doi.org/10.5599/jese.1134

Keywords:

Conductive ink; characterization; electrochemical sensor; carbon materials; stable ink
Graphical Abstract

Abstract

The purpose of this work was the fabrication of a conductive carbon nanotube (CNT) ink. The proposed CNT ink remained remarkably stable over several months. The method includes combining the covalent and non-covalent functionalization, resulting in ink that exhibits excellent storage stability. The covalent functionalization was performed in the acid medium using H2SO4 and HNO3, while the non-covalent functionalization used sodium dodecyl sulfate (SDS) and ultrasonication. The materials were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), electro­chemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). FTIR and SEM confirmed that at the non-covalent functionalization, SDS was successfully adsorbed on the f-CNT surface, while at the covalent functionalization, the functional groups (-COOH, C=O and -OH) were inserted into the CNT surface. Voltammetry and EIS indicated that SDS in the presence of functional groups facilitates electron transfer by improved electrical conductivity. The final product was a well-dispersed CNT ink with an average ohmic resistance of 18.62 kΩ. This indicates that CNT ink can be used in the fabrication of electrochemical sensors.

Downloads

Download data is not yet available.

References

S. Iijima, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0

S. Mallakpour, S. Soltanian, RSC Advances 111 (2016) 109916-109935. https://doi.org/10.1039/C6RA24522F

K. H. Maria, T. Mieno, Carbon Nanotubes - Recent Progress, IntechOpen, London, United Kingdom, 2018, pp. 235-261. ISBN 9781789230529

J. Han, B. Kim, J. Li, M. Meyyappan, Materials Research Bulletin 50 (2014) 249-253. https://dx.doi.org/10.1016/j.materresbull.2013.10.048

O. Garate, L. Veiga, A. V. Medrano, G. Longinotti, G. Ybarra, L. N. Monsalve, Materials Research Bulletin 106 (2018) 137-143. https://dx.doi.org/10.1016/j.materresbull.2018.05.015

A. Aziz, M. B. Bazbouz, M. E. Welland, ACS Applied Nano Materials 3 (2020) 9385-9392. https://doi.org/10.1021/acsanm.0c02013

L. Ziyin, T. Le, X. Song, Y. Yao, Z. Li, K. Moon, M. Tentzeris, C. P. Wong, Journal of Electronic Packaging 135 (2013) 011001-5. https://doi.org/10.1115/1.4023758

B. Dinesh, R. Saraswathi, A. Senthil Kumar, Electrochimica Acta 233 (2017) 92-104. https://doi.org/10.1016/j.electacta.2017.02.139

Y. Wang, H.-J. Yang, H.-Z. Geng, Z.-C. Zhang, E.-X. Ding, Y. Meng, Z.-J. Luo, J. Wang, X.-M. Su, S.-X. Da, Journal of Materials Chemistry C 15 (2015) 3796-3802. https://doi.org/10.1039/C5TC00138B

T. H. Costa, E. Song, R. P. Tortorich, J-W. Woo, ECS Journal of Solid State Science and Technology 4 (2015) S3044. https://doi.org/10.1149/2.0121510jss

P. Chen, H. Chen, J. Qiu, C. Zhou, Nano Research 8 (2010) 594–603. https://doi.org/10.1007/s12274-010-0020-x

R. P. Tortorich, E. Song, J.-W. Choi, Journal of The Electrochemical Society 161 (2013) B3044–B3048. https://doi.org/10.1149/2.0121510jss

H. Menon, R. Aiswarya, K. P. Surendran, RSC Advances 7 (2017) 44076–44081. https://doi.org/10.1039/C7RA06260E

Y. Matsuzawa, H. Jintoku, Chemistry Letters 48 (2019) 674–677. https://doi.org/10.1246/cl.190161

G. Tobias, E. Mendoza, B. Ballesteros, Encyclopedia of Nanotechnology, Springer, Columbus, USA, 2012, pp 911-919. ISBN 978-90-481-9752-1

L. Y. Jun, N. M. Mubarak, M. J. Yee, L. S. Yon, C. H. Bing, M. Khalid, E. C. Abdullah, Journal of Industrial and Engineering Chemistry, 67 (2018), 175-186. https://doi.org/10.1016/j.jiec.2018.06.028

M. Karimi, N. Solati, M. Amiri, H. Mirshekari, E. Mohamed, M. Taheri, M. Hashemkhani, A. Saeidi, M. A. Estiar, P. Kiani, A. Ghasemi, S. M. Basri, A. R. Aref, M. R. Hamblin, Expert opinion on drug delivery 12 (2015) 1071-1087. https://doi.org/10.1517/17425247.2015.1003806

A. G. Osorio, I. C. L. Silveira, C. P. Bergmann, Applied Surface Science 255 (2008) 2485-2489. https://doi.org/10.1016/j.apsusc.2008.07.144

T. T. Nguyen, S. U. Nguyen, D. T. Phuong, D. C. Nguyen, A. T. Mai, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 1-4. https://doi.org/10.1088/2043-6262/2/3/035015

L. T. M. Hoa, Diamond and Related Materials 89 (2018) 43-51. https://doi.org/10.1016/j.diamond.2018.08.008

A. L. Pistone, A. Ferlazzo, M. Lanza, C. Milone, D. Iannazzo, A. Piperno, E. Piperopoulos, S. J. Galvagno, Nanosci Nanotechnol. 12 (2012) 5054-60. https://doi.org/10.1166/jnn.2012.4928

B. Ribeiro, E. C. Botelho, M. L. Costa, C. F. Bandeira, Polímeros 27 (2017) 247-255. https://doi.org/10.1590/0104-1428.03916

R. P. Tortorich, H. Shamkhalichenar, J. Choi, Appl. Sci. 2 (2018) 1-16. https://doi.org/10.3390/app8020288

C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Biochimica et Biophysica Acta (BBA) – Biomembranes 1758 (2006) 404-412. https://doi.org/10.1016/j.bbamem.2005.10.008

I. Jeon, D. W. Chang, N. A. Kumar, J. Baek, Polymer Nanocomposites - Siva Yellampalli, IntechOpen, London, United Kingdom, 2011, pp 396-343. https://doi.org/10.5772/18396

W. H. Duan, Q. Wang, F. Collins, Chem. Sci. 2 (2011) 1407-1413. https://doi.org/10.1039/C0SC00616E

K. Yang, Z. L. Yi, Q. F. Jing, R. L. Yue, W. Jiang, D. H. Lin, Materials Science 58 (2013) 2082-2090. https://doi.org/10.1007/s11434-013-5697-2

O. Matarredona, H. Rhoads, Z. Li, J. H. Harwell, L. Balzano, D. E. Resasco, J Phys Chem B 107 (2003) 13357-13367. https://doi.org/10.1021/jp0365099

J. Yu, N. Grossiord, C. E. Koning, L. Joachim, Carbon 45 (2007) 618-623. https://doi.org/10.1016/j.carbon.2006.10.010

J. E. L. Siqueira, P. J. P. Gleize, Rev. IBRACON Estrut. Mater. 13 (2020) 455-463. https://doi.org/10.1590/S1983-41952020000200013

J. W. Su, C. Y. Hsu, S. J. Fu, C. H. Guo, K. J. Lin, J. Chin. Chem. Soc. 56 (2009) 935-939. https://doi.org/10.5772/16526

R. S. Sahota, S. M. Dakka, ChemEngineering 36 (2020) 1-19. https://doi.org/10.3390/chemengineering4020036

J. B. Russel, Química Geral 2ª edição, Pearson, São Paulo, São Paulo, 1994, pp 20-50. ISBN 9788534601511

J. Clayden, N. Greeves, S. Warren, Organic Chemistry 2ª edição, Oxford University Press, Oxford, United Kingdom, 2012, pp. 10-90. ISBN: 978-0199270293

W. Martindale, The Extra Pharmacopeia, 29th ed., The Pharmaceutical Press, London, United Kingdom, 1989, pp. 12-50. ISBN 0853693005

A. M. Grumezescu, Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach, Elsevier, Oxford, United Kingdom, 2018, pp 11-50. ISBN 9780128136928

A. Almowarai, Y. Ueno, Y. Show, Journal of Nanomaterials 315017 (2015) 1-7. https://doi.org/10.1155/2015/315017

M. Meyyappan, Carbon Nanotubes Science and Applications, CRC Press, Boca Raton, USA, 2004, pp 11-25. ISBN 9780849321115

S. Manzetti, J. Gabriel, International Nano Letters 9 (2019) 31-49. https://doi.org/10.1007/s40089-018-0260-4

B. Qiao, Y. Liang, T.-J. Wang, Y. Jiang, Applied Surface Science 364 (2016) 103-109. https://doi.org/10.1016/j.apsusc.2015.12.116

H. Lun, J. Ouyang, H. Yang, Phys Chem Minerals 41 (2014) 281-288. https://doi.org/10.1007/s00269-013-0646-9

M. Choudhary, S. M. Kamil, ACS Omega 5 (2020) 22891-22900. https://doi.org/10.1021/acsomega.0c02255

M. S. Muhamad, M. R. Salim, W. Lauc, RSC Adv. 5 (2015) 58644-58654. https://doi.org/10.1039/C5RA07527K

R. B. Viana, A. B. F. Silva, A. Pimentel, Advances in Physical Chemistry 9 (2012) 1-14. https://doi.org/10.1155/2012/903272

M. A. E. Hafizah, A. F. Riyadi, A. Mana, A. Andreas, Materials Science and Engineering 515 (2019) 012080. https://doi.org/10.1088/1757-899X/515/1/012080

S. A. Wulandaril, H. Widiyandari, A. Subagi, J. Phys.: Conf. Ser. 1025 (2018) 012005-012015. https://doi.org/10.1088/1742-6596/1025/1/012005

M. A. Nawas, S. Rauf, G. Catanante, M. H. Nawaz, G. Nunes, J. L. Marty, Sensors 16 (2016) 1651-1665. https://doi.org/10.3390/s16101651

A. TermehYousefi, S. Bagheri, K. Shinji, J. Rouhi, M. Rusop, S. Ikedal, BioMed Research International 691537 (2014) 1-6. https://doi.org/10.1155/2014/691537

J. M. Domínguez-González, P. Castell, S. Bespín-Gaszón, A. Ansón-Casaos, A. M. Diéz-Pascual, M. A. Gómez-Fatou, A. M. Banito, W. K. Maser, M. T. Martinéz, J. Mater. Chem. 22 (2012) 21285-21297. https://doi.org/10.1039/c2jm35272a

J. Wei, M. Saharudin, T. Vo, F. Inam, J Reinf Plast Comp 37 (2018) 1-8. https://doi.org/10.1177/0731684418765369

P. Cañete-Rosales, A. Álvarez-Lueje, S. Bollo, Sensors and Actuators B: Chemical 191 (2014) 688-694. https://doi.org/10.1016/j.snb.2013.10.056

B. R. C. Menezes, F. V. Ferreira, B. C. Silva, E. A. N. Simonetti, T. M. Bastos, L. S. Cividanes, G. P. Thim, Journal of Materials Science 53 (2018) 14311–14327. https://doi.org/10.1007/s10853-018-2627-3

G. Mago, C. Velasco-Santos, A. L. Martinez-Hernandez, D. M. Kalyon, F. T. Fisher, MRS Proceedings 1056 (2007) 1-6. https://doi.org/10.1557/PROC-1056-HH11-35

J. M. Domínguez-González, P. Castell, S. Bespín-Gaszón, A. Ansón-Casaos, A. M. Diéz-Pascual, M. A. Gómez-Fatou, A. M. Banito, W. K. Maser, M. T. Martinéz, J. Mater. Chem. 22 (2012) 21285-21297. https://doi.org/10.1039/c2jm35272a

J. Navamani, R. Palanisamy, R. Gurusamy, M. Ramasamy, S. J. Arumugam, Biosens Bioelectron 3 (2012) 1-14. https://doi.org/10.4172/2155-6210.1000122

R. Yudianti, H. Onggo, Y. Surdirman; Y. Saito, T. Iwata, J. Azuma, The Open Materials Science Journal 5 (2011) 242-247. https://doi.org/10.2174/1874088X01105010242

J. Wei, M. Saharudin, T. Vo, F. Inam, J Reinf Plast Comp 37 (2018) 1-8. https://doi.org/10.1177/0731684418765369

P. Zhang, G. Qian, Z. P. Xu, H. Shi, X. Ruan, J. Yang, R. L. Frost, Journal of Colloid and Interface Science 367 (2012) 264-271. https://doi.org/10.1016/j.jcis.2011.10.036

H.-T. Chan, R. Bhat, A. A. Karim, Food Chemistry 120 (2010) 703-709. https://doi.org/10.1016/j.foodchem.2009.10.066

M. Marvi, N. Farsaeivahid, M. Jamal, S. M. Naghib, A. Ghaffarinejad, Conference Paper 5772 (2018) 1-11. https://doi.org/10.3390/ecsoc-22-05772

Y. J. Lau, J. L. S. Yon, Y. Shang, M. Mujawar, M. Khalid, C. Bing, IOP Conference Series: Materials Science and Engineering 495 (2019) 012057. https://doi.org/10.1088/1757-899X/495/1/012057

E. Malikov, M. Muradov, O. Akperov, G. Eyvazova, R. Puskas, D. Madarász, L. Nagy, A. Kukovecz, Z. Kónya, Physica E: Low-dimensional Systems and Nanostructures 61 (2014) 129-134. https://doi.org/10.1016/j.physe.2014.03.026

W. Li, W.-M. Ji, Y. Liu, F. Xing, Y.-K. Liu, Journal of Nanomaterials 371404 (2015) 1-7. https://doi.org/10.1155/2015/371404

S. Chatterjee, F. Nüesch, B. T. -T. Chu, Nanotechnology 22 (2011) 275714. https://doi.org/10.1088/0957-4484/22/27/275714

D. Ramimoghadam, M. Z. B. Hussein, Y. H. Taufiq-Yap, Int. J. Mol. Sci. 13 (2012) 13275-13293. https://doi.org/10.3390/ijms131013275

D. G. Dalgleish, P. A. Spagnuolo, H. D. Goff, International Dairy Journal, 14 (2004) 1025-1031. https://doi.org/10.1016/j.idairyj.2004.04.008

L. R. Rasteiro, L. H. Vieira, C. V. Santilli, L. Martins, RSC Adv. 8 (2018) 11975-11982. https://doi.org/10.1039/C8RA01443D

B. Kumar, B. K. Kaushik, Journal of Materials Science: Materials in Electronics 25 (2014) 1-30. https://doi.org/10.1007/s10854-013-1550-2

Y. Wang, G. J. Weng, Micromechanics and Nanomechanics of Composite Solids, Springer International Publishing, 2017, pp 123-156. ISBN 978-3-319-52794-9

C. Raril, J. G. Manjunatha, Biomed J Sci & Tech Res 11 (2018) 8560-8564. https://doi.org/10.26717/BJSTR.2018.11.002108

F. Chekin, J. B. Raoof, S. Bagheri, S. B. A. Hamid, Analytical Methods 4 (2012) 2977-2981. https://doi.org/10.1039/C2AY25427A

W. Zhang, J. Chen, G. F. Swiegers, Z.-F. Ma, G. G. Wallace, Nanoscale 2 (2010) 282-286. https://doi.org/10.1039/B9NR00140A

Y. Wu, Y. Zhang, Y. Liu, P. Cui, S. Chen, Z. Zhang, J. Fu, E. Xie, ACS Applied Materials & Interfaces 12 (2020) 42933-42941. https://doi.org/10.1021/acsami.0c11085

J. G. Roberts, L. Z. Lugo-Morales, P. L. Loziuk, L. A. Sombers, Methods in molecular biology, 2013, 964, 275-294. https://doi.org/10.1007/978-1-62703-251-3_16

R. S. Hastak, P. Sivaraman, D. D. Potphode, K. Shashidhara, A. B. Samui, Journal of Solid State Electrochemistry 16 (2012) 3215-3226. https://doi.org/10.1007/s10008-012-1679-6

M. Tang, J. Li, Z. Li, L. Fu, B. Zeng, J. Lv, Materials 12 (2019) 449-464. https://doi.org/10.3390/ma12030449

H. T. Jeong, J. F. Du, Y. R. Kim, Chemistry Select 21 (2017) 6057-6061. https://doi.org/10.1016/j.jiec.2017.10.009

T. Yang, X. Ren, M. Yang, X. Li, K. He, A. Rao, Y. Wan, H. Yang, S. Wang, Z. Luo, Biosensors and Bioelectronics 141 (2019) 111406. https://doi.org/10.1016/j.bios.2019.111406

R. A. Ahmed, R. A. Farghali, A. M. Fekry, International Journal of Electrochemical Science 7 (2012) 7270-7282. https://doi.org/10.5772/intechopen.74989

L. Cao, Y. Wan, S. Yang, P. P. Jibin, Coatings 8 (2018) 285. https://doi.org/10.3390/coatings8080285

H. Wu, K. Xi, S. Xiao, S. Ngai, C. Zhou, M. He, K. Shi, Y. Yu, Y. Yang, G. Chen, K. Ding, Surface and Coatings Technology 402 (2020) 126491. https://doi.org/10.1016/j.surfcoat.2020.126491

H.-C. Tian, J.-Q. Liu, X.-Y. Kang, D.-X. Wei, C. Zhang, J. C. Du, B. Yang, Y. Chen, C.-S. Yang, RSC Adv. 4 (2014) 47461. https://doi.org/10.1039/C4RA07265K

C. Grisales, N. Herrera, F. Fajardo, Physics Education 51 (2016) 055011. https://doi.org/10.1088/0031-9120/51/5/055011

R. P. Tortorich, H. Shamkhalichenar, J. Choi, Appl. Sci. 2 (2018) 1-16. https://doi.org/10.3390/app8020288

C. Phillips, A. Al-Ahmadi, S.-J. Potts, T. Claypole, D. Deganello, Journal of Materials Science 52 (2017) 9520-9530. https://doi.org/10.1007/s10853-017-1114-6

T. Zhong, N. Jin, W. Yuan, C. Zhou, W. Gu, Z. Cui, Materials (Basel) 8 (2019) 3036-3050. https://doi.org/10.3390/ma12183036

D. A. C. Brownson, L. C. S. Figueiredo-Filho, B. L. Riehl, B. D. Riehl, M. Gómez-Mingot, J. Iniesta, O. Fatibello-Filho, G. E. Banks, J. Mater. Chem. A 4 (2016) 2617-2629. https://doi.org/10.1039/C5TA08561F

G. A. Rance, D. H. Marsh, R. J. Nicholas, A. N. Khlobystov, Chemical Physics Letters 493 (2010) 19-23. https://doi.org/10.1016/j.cplett.2010.05.012

H.A. Zeinabad, A. Zarrabian, A.A. Sboury, A. M. Alizadeh, M. Falahati, Scientific Reports 6 (2016) 26508. https://doi.org/10.1038/srep26508

L. Jiang, L. Gao, J. Sun, Journal of Colloid and Interface Science 260 (2003) 89-94. https://doi.org/10.1016/S0021-9797(02)00176-5

P. Yadav, R. Ajore, L. M. Bharadwaj, Journal of Nanotechnology Online 5 (2009) 2-14. https://doi.org/10.2240/azojono0130

Y. Shi, L. Ren, D. Li, H. Gao, B. Yang, Journal of Surface Engineered Materials and Advanced Technology 3 (2013) 6-12. https://doi.org/10.4236/jsemat.2013.31002

K. Yang, Z. Yi, Q. Jing, R. Yue, W. Jiang, D. Lin, Chinese Science Bulletin 58 (2013) 2082-2090. https://doi.org/10.1007/s11434-013-5697-2

Published

02-12-2021

How to Cite

Ferreira Oliveira, A. E., Pereira, A. C. ., & Ferreira, L. F. (2021). Development of highly stable conductive multiwalled carbon nanotube ink using covalent and non-covalent functionalization for electrochemical sensors. Journal of Electrochemical Science and Engineering, 12(1), 105–126. https://doi.org/10.5599/jese.1134

Issue

Section

Electrochemical Science