Organic and inorganic compounds as corrosion inhibitors to reduce galvanic effect for the hybrid structure AA2024-CFPR
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1126Keywords:
Electrochemical methods, rare hearths, adsorption isotherm, Gibbs free energy, synergistic effect, power spectral density
Abstract
The effect of the galvanic corrosion process taking place between aluminium alloy (AA2024-T3) and carbon fiber reinforced plastic (CFRP) immersed in 0.05 M NaCl was studied using organic and inorganic compounds as corrosion inhibitors. Electrochemical approaches such as electrochemical noise analysis (ENA) and electrochemical impedance spectroscopy (EIS) were carried out to evaluate efficiencies of 1,2,4-triazole (C2H3N3) and cerium nitrate hexahydrate (Ce(NO3)3·6H2O) as corrosion inhibitors. The highest efficiency was reached for Ce(NO3)3.6H2O, with some improvement observed by adding C2H3N3 in a mixed inhibitor solution. The noise resistance (Rn) and polarization resistance (Rp) values calculated from ENA and EIS data showed almost identical behavior with different magnitudes but similar trends. Adsorption isotherm models estimated with fractional surface coverage (q) parameter were fitted better to Langmuir model for C2H3N3 and Temkin model for Ce(NO3)3·6H2O. The calculated values of Gibbs free energy suggested physisorption and chemisorption as spontaneous interactions between a metal surface and both inhibitors. Energy-dispersive X-ray spectroscopy (EDS) was carried out before and after immersing AA2024-T3 in the electrolyte, identifying rich zones in copper with cerium deposited over it and confirming the presence of rare-earth oxide deposition and oxide film products. The EDS analysis for CFRP revealed the deposition of Ce and Al particles over its surface after immersion in the electrolyte, especially in the areas rich in carbon.
Downloads
References
R. Alderliesten, R. Benedictus, Journal of Aircraft 45(4) (2008) 1182-1189. https://doi.org/10.2514/1.33946
T. Sinmazçelik, E. Avcu, M. Ö. Bora, O. Çoban, Materials & Design 32(7) (2011) 3671-3685. http://dx.doi.org/10.1016/j.matdes.2011.03.011
A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corrosion Science 50(3) (2008) 823-834. http://dx.doi.org/10.1016/j.corsci.2007.11.005
G. Song, B. Johannesson, S. Hapugoda, D. StJohn, Corrosion Science 46(4) (2004) 955-977. http://dx.doi.org/10.1016/S0010-938X(03)00190-2
Y. Pan, G. Wu, X. Cheng, Z. Zhang, M. Li, S. Ji, Z. Huang, Corrosion Science 98 (2015) 672-677. http://dx.doi.org/10.1016/j.corsci.2015.06.024
M. Mokaddem, P. Volovitch, F. Rechou, R. Oltra, K. Ogle, Electrochimica Acta 55(11) (2010) 3779-3786. http://dx.doi.org/10.1016/j.electacta.2010.01.079
E. Matter, S. Kozhukharov, M. Machkova, V. Kozhukharov, Scientific Papers of The University of Russia 48(9) (2009) 19-23. http://conf.uni-ruse.bg/bg/docs/cp09/9/9-3.pdf
G. Wu, J. M. Yang, JOM 57(1) (2005) 72-79. https://doi.org/10.1007/s11837-005-0067-4
L. Dong-xia, L. Li, L. Ming, IOP Conference Series: Materials Science and Engineering 10 (2010) 012098. http://dx.doi.org/10.1088/1757-899X/10/1/012098
D. Liu, Y. Tang, W. L. Cong, Composite Structures 94(4) (2012) 1265-1279. http://dx.doi.org/10.1016/j.compstruct.2011.11.024
S. Payan, Y. Le Petitcorps, J. M. Olive, H. Saadaoui, Composites Part A: Applied Science and Manufacturing 32(3-4) (2001) 585-589. http://dx.doi.org/10.1016/S1359-835X(00)00126-3
El-Sayed M. Sherif, F. H. Latif, H. Junaedi, International Journal of Electrochemical Science 6 (2011) 1085-1099. http://www.electrochemsci.org/papers/vol6/6041085.pdf
W.-X. Wang, Y. Takao, T. Matsubara, Proceedings of the 16th International Conference on Composite Materials, ICCM-16, (2007) 1-10. https://www.iccm-central.org/Proceedings/ICCM16proceedings/contents/pdf/WedK/WeKM1-05ge_wangw224701p.pdf
V. Palanivel, Y. Huang, W. J. van Ooij, Progress in Organic Coatings 53(2) (2005) 153-168. http://dx.doi.org/10.1016/j.porgcoat.2003.07.008
C.-M. Liao, R. P. Wei, Electrochimica Acta 45(6) (1999) 881-888. http://dx.doi.org/10.1016/S0013-4686(99)00299-6
C. Monticelli, F. Zucchi, G. Brunoro, G. Trabanelli, Journal of Applied Electrochemistry 27 (1997) 325-334. https://doi.org/10.1023/A:1018436931465
A. Torres, J. Uruchurtu, J. G. González-Rodríguez, S. Serna, Corrosion (Houston) 63(9) (2007) 866-871. http://dx.doi.org/10.5006/1.3278437
M. L. Zheludkevich, K. A. Yasakau, S. K. Poznyak, M. G. S. Ferreira, Corrosion Science 47(12) (2005) 3368-3383. http://dx.doi.org/10.1016/j.corsci.2005.05.040
A. Aballe, M. Bethencourt, F. J. Botana, M. J. Cano, M. Marcos, Materials and Corrosion 52(5) (2001) 344-350. https://doi.org/10.1002/1521-4176(200105)52:5%3C344::AID-MACO344%3E3.0.CO;2-S
A. Decroly, J.-P. Petitjean, Surface and Coatings Technology 194(1) (2005) 1-9. http://dx.doi.org/10.1016/j. surfcoat.2004.05.012.
A. Salve, V. Kozhukharov, J. Pernas, E. Matter, M. Machkova, Journal of University of Chemical Technology and Metallurgy 47(3) (2012) 319-328. https://www.researchgate.net/publication/268002945
S. Kozhukharov, V. Kozhukharov, M. Wittmar, M. Schem, M. Aslan, H. Caparrotti, M. Veith, Progress in Organic Coatings 71(2) (2011) 198-205. https://doi.org/10.1016/j.porgcoat.2011.02.013
M. L. Zheludkevich, R. Serra, M. F. Montemor, K. A. Yasakau, I. M. M. Salvado, M. G. S. Ferreira, Electrochimica Acta 51(2) (2005) 208-217. https://doi.org/10.1016/j.electacta.2005.04.021
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.