Decolorization of industrial wastewater using electrochemical peroxidation process

Original scientific paper

  • Elin Marlina Doctoral Program of Environmental Science, School of Postgraduate Studies, Universitas Diponegoro, Semarang, Indonesia
  • Purwanto Purwanto Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
  • Sudarno Sudarno Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, Indonesia
Keywords: Paper industry wastewater, electrochemical peroxidation, Fenton’s reaction, decolori¬zation efficiency, chemical oxygen demand
Graphical Abstract


In this study, decolorization of wastewater samples taken from the paper industry is investigated using electrochemical peroxidation process. The electrochemical peroxidation process is a part of electrochemical advanced oxidation processes, which is based on the Fenton’s chemical reaction, provided by addition of external H2O2 into reaction cell. In this study, iron is used as anode and graphite as cathode put at the fixed distance of 30 mm in a glass reaction cell. The cell was filled with the solution containing wastewater and sodium chloride as the supporting electrolyte. Factors of the process such as pH, current intensity, hydrogen peroxide concentration, and time of treatment were studied. The results illustrate that all these parameters affect efficiencies of dye removal and chemical oxygen demand (COD) reducing. The maximal removal of wastewater contaminants was achieved under acid (pH 3) condition, with the applied current of 1 A, and hydrogen peroxide concentration of 0.033 M. At these conditions, decolorization process efficiency reached 100 and 83 % of COD removal after 40 minutes of wastewater sample treatment. In addition, the electrical energy consumption for wastewater treatment by electrochemical peroxidation is calculated, showing increase as the current intensity of treatment process was increased. The obtained results suggest that electrochemical peroxidation process can be used for removing dye compounds and chemical oxygen demand (COD) from industrial wastewaters with high removal efficiency.


Download data is not yet available.


A. D. Bokare, R. C. Chikate, C. V. Rode, K. M. Paknikar, Applied Catalysis B 79(3) (2008) 270-278.

G. Thompson, J. Swain, M. Kay, C. F. Forster, Bioresource Technology 77(3) (2001) 275-286.

E. Brillas, I. Sirés, M. A. Oturan, Chemical Reviews 109(12) (2009) 6570–6631.

C. A. Martınez-Huitle, E. Brillas, Applied Catalysis B 87(3-4) (2009) 105-145.

N. Klidi, F. Proietto, F. Vicari, A. Galia, S. Ammar, A. Gadri, O. Scialdone, Journal of Electroanalytical Chemistry 841 (2019) 166-171.

N. Oturan, M. A. Oturan, in: Electrochemical Water and Wastewater Treatment, Chap. 8 (2018) 193-221.

S. Loaiza-Ambuludi, M. Panizza, N. Oturan, A. Özcan, M. A. Oturan, Journal of Electroanalytical Chemistry 702 (2013) 31-36.

T. M. Do, J. Y. Byun, S. H. Kim, Catalysis Today 295 (2017) 48-55.

H. Lin, Removal of Organic Pollutants from Water by Electro-Fenton and Electro-Fenton like Processes, Ph.D. Thesis, Université Paris-Est, 2015.

P. A. Diaw, N. Oturan, M. D. G. Seye, A. Coly, A. Tine, J.-J. Aaron, M. A. Oturan, Separation and Purification Technology 186 (2017) 197-206.

O. Iglesias, M. A. Fernández de Dios, T. Tavares , M. A. Sanromán, M. Pazos, Journal of Industrial and Engineering Chemistry 27 (2015) 276-282.

M. J. Bashir, J. H. Lim, S. S. A. Amr, L. P. Wong, Y. L. Sim, Journal of Cleaner Production 208 (2020) 716-727.

13. F. Ozyonar, B. Karagozoglu, Separation and Purification Technology 150 (2015) 268-277.

G. Selvabharathi, S. Adishkumar, J. R. Banu, Desalination and Water Treatment 156 (2019) 340-348.

P. Rafiee, M. Hosseini, S. Ebrahimi, Reaction Kinetics, Mechanisms and Catalysis 131 (2020) 319-334.

A. Baiju, R. Gandhimathi, S. T. Ramesh, P. V. Nidheesh, Journal of Environmental Management, 210 (2018) 328-337.

H. Zhang, X. Ran, X. Wu, Journal of Hazardous Materials 241–242 (2012) 259-266.

C. T. Wang, W. L. Chou, M. H. Chung, Y. M. Kuo, Desalination 253(1-3) (2010) 129-134.

P. V. Nidheesh, R. Gandhimathi, Desalination 299 (2012) 1-15.

H. Olvera-Vargas, X. Zheng, O. Garcia-Rodriguez, O. Lefebvre, Water Research 154 (2019) 277-286.

M. Y. A. Mollah, R. Schennach, J. R. Parga, D. L. Cocke, Journal of Hazardous Materials 84(1) (2001) 29-41.

M.J. Bashir, J.H. Lim, S. S. A. Amr, L. P. Wong, Y. L. Sim, Journal of Cleaner Production 208 (2020) 716-727.

C. Comninellis, G. Chen (Eds.), Electrochemistry for the Environment, Springer, London, 2008.

A. Akyol, O. T. Can, E. Demirbas, M. Kobya, Separation and Purification Technology 112 (2013) 11-19.

F. C. Moreira, R. A. R. Boaventura, E. Brillas, V. J. P. Vilar, Applied Catalysis B: Environmental 202 (2017) 217-261.

G. Moussavi, M. Aghanejad, Separation and Purification Technology 132 (2014) 182-186.

I. A. Alaton, S. Teksoy, Dyes and Pigments 73(1) (2007) 31-39.

S. Sharma, H. Simsek, Chemosphere 221 (2019) 630-639.

I. Khatri, S. Singh, A. Garg, Journal of Environmental Chemical Engineering 6(6) (2018) 7368-7376.

S. Suhartana, P. Purwanto, A. Darmawan, Journal of Physics: Conference Series 1524 (2020) 012086.

P. Purwanto, R. Riska, Journal of Physics: Conference Series 1295 (2019) 012045.

A. Babuponnusami, K. Muthukumar, Chemical Engineering Journal 183 (2012) 1-9.

Z. I. Abbas, A. S. Abbas, Journal of Environmental Chemical Engineering 7(3) (2019) 103108.

E. Marlina, P. Purwanto, E3S Web of Conferences 125 (2019) 03003.

F. G. Camacho, P. A. Latoh de Souza, M. L. Martins, C. Benincá, E. F. Zanoelo, Journal of Electroanalytical Chemistry 865 (2020) 114163.

E. Atmaca, Journal of Hazardous Materials 163(1) (2009) 109-114.

M. Panizza, M. Delucchi, A. Giuliano, G. Cerisola, A. Barbucci, M. P. Carpanese, M. Cataldo-Hernández, Separation and Purification Technology, 118 (2013) 394-398.

Electrochemical Engineering