J. Electrochem. Sci. Eng.  

Revised Pourbaix diagrams for the vanadium – water system

Igor Povar, Oxana Spinu, Inga Zinicovscaia, Boris Pintilie, Stefano Ubaldini


The forms of occurrence of vanadium metal are determined by the major chemical reactions in the aquatic environment such as hydrolysis, oxidation, reduction, and precipitation. Depending on pH, potential and total concentration of inorganic ions and organic ligands, vanadium compounds may undergo various transformations to produce a whole range of chemical forms in aqueous systems. In this paper, a novel approach has been applied for calculating potential-pH (Pourbaix) diagrams, based on the developed thermodynamic analysis of chemical equilibria in the V–H2O system. On the basis of currently revised thermodynamic data for V(III), V(IV) and V(V) hydrolysis and original thermodynamic and graphical approach used, the repartition of their soluble and insoluble chemical species has been investigated. By means of ΔG–pH diagrams, the areas of thermodynamic stability of V(IV) and V(V) hydroxides have been established for a number of analytical concentrations of vanadium in heterogeneous mixtures. The obtained results, based on the thermodynamic analysis and graphic design of calculated data, are in good agreement with available experimental data.


Potential-pH diagrams; thermodynamic analysis; thermodynamic stability; vanadium species

Full Text:

PDF (548 kB)


E. Hryha, E. Rutqvist, L. Nyborg, Surface and Interface Analysis 44 (2012) 1022-1025. http://dx.doi.org/10.1002/sia.3844

S. Youn, S. Jeong, D. H. Kim, Catalysis Today 232 (2014) 185-191. http://dx.doi.org/10.1016/j.cattod.2014.01.025

G. Beamson, N. Moslemzadeh, P. Weightman, J. F. Watts. Journal of Electron Spectroscopy and Related Phenomena, 162 (2008) 19-24. http://dx.doi.org/10.1016/j.elspec.2007.08.001

N. F. Quackenbush, H. Paik, J. C. Woicik, D. A. Arena, D. G. Schlom, L. F. Piper, Materials 8 (2015) 5452-5466. http://dx.doi.org/10.3390/ma8085255

H. Qiu, M. Yang, Y. Dong, H. Xu, B. Hong, Y. Gu, C. Gao, New Journal of Physics 17 (2015) 113016. http://dx.doi.org/10.1088/1367-2630/17/11/113016

K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado, A. Sawa, Journal of Applied Physics 118 (2015) 055301. http://dx.doi.org/10.1063/1.4927746

F. Ureña-Begara, A. Crunteanu, J. P. Raskin, Applied Surface Science 403 (2017) 717-727. http://dx.doi.org/10.1016/j.apsusc.2017.01.160

C. Zhang, Q. Yang, C. Koughia, F. Ye, M. Sanayei, S. J. Wen, S. Kasap, Thin Solid Films, 620 (2016) 64-69. http://dx.doi.org/10.1016/j.tsf.2016.07.082

X. Zhang, H. Schwarz, Chemistry–A European Journal 16 (2010) 1163-1167. http://dx.doi.org/10.1002/chem.200902810

A. Majjane, A. Chahine, M. Et-tabirou, B. Echchahed, T. O. Do, P. Mc Breen, Materials Chemistry and Physics 143 (2014) 779-787. http://dx.doi.org/10.1016/j.matchemphys.2013.10.013

M. Demeter, M. Neuman, W. Reichelt, Surface Science 454 (2000) 41-44. http://dx.doi.org/10.1016/S0039-6028(00)00111-4

D. Rehder, Dalton Transactions 42 (2013) 11749-11761. http://dx.doi.org/10.1039/C3DT50457C

S. L. Radchenko, Y. S. Radchenko, Glass and Ceramics 7 (2016) 270-273.

A. Akcil, F. Vegliò, F. Ferella, M. D. Okudan, A. Tuncuk, Waste Management 45 (2015) 420-433. http://dx.doi.org/10.1016/j.wasman.2015.07.007

Y. Yan, Y. Li, M. Skyllas-Kazacos, J. Bao, Journal of Power Sources 322 (2016) 116-128. http://dx.doi.org/10.1016/j.jpowsour.2016.05.011

T. R. S. Cadaval Jr, G. L. Dotto, E. R. Seus, N. Mirlean, L. A. de Almeida Pinto, Desalination and Water Treatment 57 (2016) 16583-16591. http://dx.doi.org/10.1080/19443994.2015.1079741

Y. Wang, X. Yin, H. Sun, C. Wang, Chemical Speciation & Bioavailability 28 (2016) 7-12. http://dx.doi.org/10.1080/09542299.2015.1133238

I. Fishtik, I. Povar, Canadian Journal of Chemistry, 84 (2016) 1036-1044. https://doi.org/10.1139/v06-127

G. M. Voldman, A. N. Zelikman, The theory of hydrometallurgical processes, Intermet Engineering, Moscow, Russia, 2003, 464 p. (in Russian)

R. R. Salem, Physical chemistry Beginning (Theoretical Electrochemistry), University book, Moscow, Russia, 2001, 326 p. (in Russian)

K. L. Nash, G. R. Choppin, Separation Science and Technology 32 (1997) 255-274. https://doi.org/10.1080/01496399708003198

I. F. Fishtik, I. I. Vataman, Thermodynamics of hydrolysis of metal ions, Stiinta, Chisinau, Republic of Moldova, 1988, 393 p. (in Russian)

H. I. Gomes, A. Jones, M. Rogerson, G. M. Greenway, D. F. Lisbona, I. T. Burke, W. M. Mayes, Journal of Environmental Management 187 (2017) 384-392. http://dx.doi.org/10.1016/j.jenvman.2016.10.063

H. Y. Li, K. Wang, W. H. Hua, Z. Yang, W. Zhou, B. Xie, Hydrometallurgy 160 (2016) 18-25. http://dx.doi.org/10.1016/j.hydromet.2015.11.014

I. Povar, O. Spinu, Journal of Electrochemical Science and Engineering 6 (2016) 145-153. https://doi.org/10.5599/jese.229

A. M. Sukhotina, Ed., Handbook of Electrochemistry, Chemistry, Leningrad, Soviet Union, 1981, 448 p. (in Russian)

C. F. Baes, R. E. Mesmer, The Hydrolysis of Cations, Wiley Interscience, N.Y., USA, 1976, 489 р.

V. P. Glushko, Ed., Thermal constants of substances, Publishing House of the USSR Academy of Sciences, Moscow, Soviet Union, 1965-1982, Vol. 1-10. (in Russian)

V. V. Vasiliev. Thermodynamic properties of solutions of electrolytes, Higher School, Moscow, Soviet Union, 1982, 320 p. (in Russian)

N. Takeno, Atlas of Eh-pH diagrams. Geological survey of Japan open file report 419 (2005) 102, 285 p.

L. Pettersson, В. Hedman, I. Andersson, N. Ingri, Chemica Scripta 22 (1983) 254-264.

M. Beck, I. Nadipal, Investigation of complexation by the latest methods, Mir, Moscow, Soviet Union, 1989, 411 p. (in Russian)

I. F. Fishtik, I. G. Роvаr, I. I. Vataman, 10th International Congress оn metal corrosion, Madras, India, 1987, 56-57.

V. Sjoberg, K. Todd, L. Sartz, S. Karlsson, 11th International Mine Water Association Congress – Mine Water – Managing the Challenges, Aachen, Germany, 2011, 481-484.

I. Fishtik, I. Povar, Koordinatsionnaya Khimiya 17 (1991) 17-20.

DOI: http://dx.doi.org/10.5599/jese.620

jESE : : Open Access Journal  :  : ISSN 1847-9286