Combined approach of nanoemulgel and microneedle pre-treatment as a topical anticellulite therapy

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2461

Keywords:

Aminophylline, caffeine, cellulite, microneedles, nanoemulsions, tretinoin
Graphical Abstract

Abstract

Background and purpose: Cellulite is caused by changes in the metabolism of the fatty tissue beneath the skin. Methylxanthines and retinoids are commonly added to the different anticellulite products. However, their topical permeation into the dermis is limited. Thus, the objective of this research is to formulate a nanoemulgel (NEG) containing a triple therapy of caffeine, aminophylline, and tretinoin as a topical anticellulite product to improve their skin permeation. Furthermore, the influence of microneedles (MNs) as skin pre-treatment on the permeation of the NEG was investigated. Experimental approach: Various nanoemulsion (NE) formulations were prepared using high-energy ultrasonication with different compositions and sonication amplitudes. Several characterisation tests were employed to select the optimum NE formulation. Then, the optimised NE formulation was incorporated with hyaluronic acid to prepare the NEG, which was, in turn, subjected to various evaluations. An ex vivo permeation study using human skin was performed for the NEG compared to a control preparation of plain gel. Additionally, a microneedling pen was applied as a skin pre-treatment at varying lengths prior to NEG application to examine its impact on the NEG’s permeation. Key results: The selected NEG has a homogenous and consistent texture with no coarse particles, a droplet size of 175.8 nm and polydispersity index (PDI) of 0.19, an optimum pH value of 5.28, high drug content of caffeine, aminophylline, and tretinoin (99.35, 98.48 and 98.05 %, respectively), high drug release values of approximately 100 % within 6 hours, appro­priate viscosity, minimum skin irritation, and adequate short-term stability. The ex vivo permeation study showed that caffeine, aminophylline, and tretinoin permeated more and deposited in the skin with higher percentages from the NEG than plain gel. This skin deposition within the dermis was increased by applying the microneedling pen at varying lengths of 0.5, 1, and 2 mm as a skin pre-treatment. Conclusion: This combined approach of NEG formulation containing a triple therapy of caffeine, aminophylline, and tretinoin, along with MNs application, has the potential to serve as a topical anticellulite product, reducing cellulite formation and improving skin appearance.

Downloads

Download data is not yet available.

References

G. Amasya, C. Ozturk, B. Aksu, N. Tarimci. QbD based formulation optimization of semisolid lipid nanoparticles as nano-cosmeceuticals. Journal of Drug Delivery Science and Technology 66 (2021) 102737. https://doi.org/10.1016/j.jddst.2021.102737.

M.S. Algahtani, M.Z. Ahmad, J. Ahmad. Nanoemulgel for improved topical delivery of retinyl palmitate: formulation design and stability evaluation. Nanomaterials 10 (2020) 848. https://doi.org/10.3390/nano10050848.

V. Gupta, S. Mohapatra, H. Mishra, U. Farooq, K. Kumar, M.J. Ansari, M.F. Aldawsari, A.S. Alalaiwe, M.A. Mirza, Z. Iqbal. Nanotechnology in cosmetics and cosmeceuticals—a review of latest advancements. Gels 8 (2022) 173. https://doi.org/10.3390/gels8030173.

A. Zoabi, E. Touitou, K. Margulis. Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces 5 (2021) 18. https://doi.org/10.3390/colloids5010018.

S. Khurana, N. Jain, P. Bedi. Nanoemulsion based gel for transdermal delivery of meloxicam: physico-chemical, mechanistic investigation. Life Sciences 92 (2013) 383-392. https://doi.org/10.1016/j.lfs.2013.01.005.

D.A. Gaber, A.M. Alsubaiyel, A.K. Alabdulrahim, H.Z. Alharbi, R.M. Aldubaikhy, R.S. Alharbi, W.K. Albishr, H.A. Mohamed. Nanoemulsion Based Gel for Topical Delivery of an Anti-Inflammatory Drug: In vitro and in vivo Evaluation. Drug Design, Development and Therapy 17 (2023) 1435-1451. https://doi.org/10.2147/DDDT.S407475.

R.J. Wilson, Y. Li, G. Yang, C.-X. Zhao. Nanoemulsions for drug delivery. Particuology 64 (2022) 85-97. https://doi.org/10.1016/j.partic.2021.05.009.

M.R. Donthi, S.R. Munnangi, K.V. Krishna, R.N. Saha, G. Singhvi, S.K. Dubey. Nanoemulgel: a novel nano carrier as a tool for topical drug delivery. Pharmaceutics 15 (2023) 164. https://doi.org/10.3390/pharmaceutics15010164

D.P. Friedmann, G.L. Vick, V. Mishra. Cellulite: a review with a focus on subcision. Clinical, Cosmetic and Investigational Dermatology 10 (2017) 17-23. https://doi.org/10.2147/CCID.S95830.

A.B.R. Rossi, A.L. Vergnanini. Cellulite: a review. Journal of the European Academy of Dermatology and Venereology 14 (2000) 251-262. https://doi.org/10.1046/j.1468-3083.2000.00016.x.

A.A. Kassem, M.H. Asfour, S.H. Abd El-Alim, M.A. Khattab, A. Salama. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 32 full factorial design optimization and in vivo evaluation in rats. International Journal of Pharmaceutics 643 (2023) 123271. https://doi.org/10.1016/j.ijpharm.2023.123271.

M. Venus, J. Waterman, I. McNab. Basic physiology of the skin. Surgery (Oxford) 28 (2010) 469-472. https://doi.org/10.1016/j.mpsur.2010.07.011.

D. Hexsel, R. Mazzuco, Cellulite, in Update in Cosmetic Dermatology, A. Tosti, D. Hexsel, Eds., Springer, Berlin, Heidelberg, 2013, p. 21-32. https://doi.org/10.1007/978-3-642-34029-1_2.

N. Sadick. Treatment for cellulite. International Journal of Women's Dermatology 5 (2019) 68-72. https://doi.org/10.1016/j.ijwd.2018.09.002.

D. Hexsel, M. Soirefmann, Cosmeceuticals for Cellulit, Seminars in Cutaneos Medicine and Surgery 30(3) (2011) 167-170. https://doi.org/10.1016/j.sder.2011.06.005.

A. Rawlings. Cellulite and its treatment. International Journal of Cosmetic Science 28 (2006) 175-190. https://doi.org/10.1111/j.1467-2494.2006.00318.x.

H. Hamishehkar, J. Shokri, S. Fallahi, A. Jahangiri, S. Ghanbarzadeh, M. Kouhsoltani. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Development and Industrial Pharmacy 41 (2015) 1640-1646. https://doi.org/10.3109/03639045.2014.980426.

R. Ali, P. Mehta, M. Arshad, I. Kucuk, M. Chang, Z. Ahmad. Transdermal microneedles—a materials perspective. AAPS PharmSciTech 21 (2020) 12. https://doi.org/10.1208/s12249-019-1560-3.

Z.M.A. Al-Wahaab, M.H. Al-Mayahy. Microneedles as a potential platform for improving antibiotic delivery to bacterial infections. Heliyon 10 (2024) e37173. https://doi.org/10.1016/j.heliyon.2024.e37173.

A. Sabeeh, A. Hussain. The growing role of hydrogel microneedles in transdermal drug delivery. International Journal of Drug Delivery Technology 11(2) (2021) 611-616. https://impactfactor.org/PDF/IJDDT/11/IJDDT,Vol11,Issue2,Article67.pdf.

M.H. Al-Mayahy, A.H. Sabri, C.S. Rutland, A. Holmes, J. McKenna, M. Marlow, D.J. Scurr. Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. European Journal of Pharmaceutics and Biopharmaceutics 139 (2019) 33-43. https://doi.org/10.1016/j.ejpb.2019.02.006.

A. Sabri, J. Ogilvie, J. McKenna, J. Segal, D. Scurr, M. Marlow. Intradermal delivery of an immunomodulator for basal cell carcinoma; expanding the mechanistic insight into solid microneedle-enhanced delivery of hydrophobic molecules. Molecular Pharmaceutics 17 (2020) 2925-2937. https://doi.org/10.1021/acs.molpharmaceut.0c00347.

C. Iriarte, O. Awosika, M. Rengifo-Pardo, A. Ehrlich. Review of applications of microneedling in dermatology. Clinical, Cosmetic and Investigational Dermatology 10 (2017) 289-298. https://doi.org/10.2147/CCID.S142450.

D. Fernandes. Minimally invasive percutaneous collagen induction. Oral and Maxillofacial Surgery Clinics 17 (2005) 51-63. https://doi.org/10.1016/j.coms.2004.09.004.

L. Kumar, B. Suhas, G.K. Pai, R. Verma. Determination of saturated solubility of naproxen using UV visible spectrophotometer. Research Journal of Pharmacy and Technology 8 (2015) 825-828. https://doi.org/10.5958/0974-360X.2015.00134.1.

S.T. Nasser, A.A. Abdulrassol, M.M. Ghareeb. Design, Preparation and In-vitro Evaluation of Novel Ocular Antifungal Nanoemulsion Using Posaconazole as a Model Drug. International Journal of Drug Delivery Technology 11(3) (2021) 1-7. https://doi.org/10.25258/ijddt.11.3.00.

O. Afzal, A.S. Altamimi, M.A. Alamri, A. Altharawi, M.A. Alossaimi, M.S. Akhtar, F. Tabassum, W.H. Almalki, T. Singh. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels 9 (2023) 131. https://doi.org/10.3390/gels9020131.

D. Saheli, M. Sharadha, V. MP, S. Subhashree, D. Jogabrata Tripathy. Formulation and evaluation of topical nanoemulgel of methotrexate for rheumatoid arthritis. International Journal of Applied Pharmaceutics 13 (2021) 351-357. https://doi.org/10.22159/ijap.2021v13i5.41026.

S. Gharat, V. Basudkar, M. Momin. In-Vitro and in-Vivo Evaluation of the Developed Curcumin-Cyclosporine-Loaded Nanoemulgel for the Management of Rheumatoid Arthritis. Immunological Investigations 53 (2024) 490-522 . https://doi.org/10.1080/08820139.2024.2301997.

S.T. Jadhav, V.R. Salunkhe, S.D. Bhinge. Nanoemulsion drug delivery system loaded with imiquimod: a QbD-based strategy for augmenting anti-cancer effects. Future Journal of Pharmaceutical Sciences 9 (2023) 120. https://doi.org/10.1186/s43094-023-00568-z.

N.E. Khalifa, M.H. Abdallah, H.A. Elghamry, W.M. Khojali, E.-S. Khafagy, H. El-Sayed El-Horany, S. Shawky. Development of Tea Tree Oil Based Nanoemulgel Loaded with Azithromycin for Enhancing the Antibacterial Activity. Processes 11 (2023) 1836. https://doi.org/10.3390/pr11061836.

A.S. Al-Badry, M.H. Al-Mayahy, D.J. Scurr. Enhanced Transdermal Delivery of Acyclovir via Hydrogel Microneedle Arrays. Journal of Pharmaceutical Sciences 112 (2023) 1011-1019. https://doi.org/10.1016/j.xphs.2022.11.012.

M.A. Elsheikh, P.M. Gaafar, M.A. Khattab, M.K.A. Helwah, M.H. Noureldin, H. Abbas. Dual-effects of caffeinated hyalurosomes as a nano-cosmeceutical gel counteracting UV-induced skin ageing. International Journal of Pharmaceutics: X 5 (2023) 100170. https://doi.org/10.1016/j.ijpx.2023.100170.

P. Priyadarshini, P. Karwa, A. Syed, A. Asha. Formulation and Evaluation of Nanoemulgels for the Topical Drug Delivery of Posaconazole. Journal of Drug Delivery and Therapeutics 13 (2023) 33-43. https://doi.org/10.22270/jddt.v13i1.5896.

W.E. Soliman, T.M. Shehata, M.E. Mohamed, N.S. Younis, H.S. Elsewedy. Enhancement of curcumin anti-inflammatory effect via formulation into myrrh oil-based nanoemulgel. Polymers 13 (2021) 577. https://doi.org/10.3390/polym13040577.

A. Aslani, A. Ghannadi, H. Najafi. Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and Coriandrum sativum L. as periodontal drug delivery. Advanced Biomedical Research 2 (2013) 21. https://doi.org/10.4103/2277-9175.108007.

M.A. Morsy, R.G. Abdel-Latif, A.B. Nair, K.N. Venugopala, A.F. Ahmed, H.S. Elsewedy, T.M. Shehata. Preparation and evaluation of atorvastatin-loaded nanoemulgel on wound-healing efficacy. Pharmaceutics 11 (2019) 609. https://doi.org/10.3390/pharmaceutics11110609.

B. Alhasso, M.U. Ghori, S.P. Rout, B.R. Conway. Development of a Nanoemulgel for the Topical Application of Mupirocin. Pharmaceutics 15 (2023) 2387. https://doi.org/10.3390/pharmaceutics15102387.

C. Fan, X. Li, Y. Zhou, Y. Zhao, S. Ma, W. Li, Y. Liu, G. Li. Enhanced topical delivery of tetrandrine by ethosomes for treatment of arthritis. BioMed Research International 2013 (2013) 13. https://doi.org/10.1155/2013/161943.

M.H. Al-Mayahy, M. Marlow, D.J. Scurr. The Complementary Role of ToF-SIMS in the Assessment of Imiquimod Permeated into the Skin from a Microemulsion Dosage Form. Al Mustansiriyah Journal of Pharmaceutical Sciences 19 (2019) 196-210. https://doi.org/10.32947/ajps.19.04.0431.

M. Wróblewska, E. Szymańska, M. Szekalska, K. Winnicka. Different types of gel carriers as metronidazole delivery systems to the oral mucosa. Polymers 12 (2020) 680. https://doi.org/10.3390/polym12030680.

V. Harshitha, M.V. Swamy, D.P. Kumar, K.S. Rani, A. Trinath. Nanoemulgel: A process promising in drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology 12 (2020) 125-130. https://doi.org/10.5958/0975-4377.2020.00022.1.

T. Das, N. Chatterjee, A. Chakraborty, A. Banerjee, S.B. Haiti, S. Datta, H. Chattopadhyay, P. Dhar. Fabrication of rice bran oil nanoemulsion and conventional emulsion with Mustard Protein Isolate as a novel excipient: Focus on shelf-life stability, lipid digestibility and cellular bioavailability. Food Hydrocolloids for Health 4 (2023) 100143. https://doi.org/10.1016/j.fhfh.2023.100143.

Q. Wang, X. Gu, W. Li, H. Zhang, Y. Li, S. Dong, C. Gang. Preparation of Sodium Oleate-Derived Multifunctional Surfactants by Hydroxymethylation. Russian Journal of Physical Chemistry B 17 (2023) 283-292. https://doi.org/10.1134/S1990793123020136.

P.J. Sinko, Martin's physical pharmacy and pharmaceutical sciences, 6th edition ed., Lippincott Williams & Wilkins, Piscataway, New Jersey, USA, p. 674. ISBN 978-1451191455

R. Llinares, J. Santos, L.A. Trujillo-Cayado, P. Ramírez, J. Muñoz. Enhancing rosemary oil-in-water microfluidized nanoemulsion properties through formulation optimization by response surface methodology. Lwt 97 (2018) 370-375. https://doi.org/10.1016/j.lwt.2018.07.033.

Y.H. Park, H.J. Kim. Formulation and stability of horse oil-in-water emulsion by HLB system. Food Science and Biotechnology 30 (2021) 931-938. https://doi.org/10.1007/s10068-021-00934-8.

D.J. McClements, S.M. Jafari. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251 (2018) 55-79. https://doi.org/10.1016/j.cis.2017.12.001.

L. Allen, H.C. Ansel, Ansel's pharmaceutical dosage forms and drug delivery systems, Lippincott Williams & Wilkins, Philadelphia, 2013, p. 153, 469. ISBN 978 1 4511 8876 9

T. Delmas, H. Piraux, A.-C. Couffin, I. Texier, F. Vinet, P. Poulin, M.E. Cates, J. Bibette. How to prepare and stabilize very small nanoemulsions. Langmuir 27 (2011) 1683-1692. https://doi.org/10.1021/la104221q.

S.A. Abosabaa, M.G. Arafa, A.N. ElMeshad. Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. Journal of Drug Delivery Science and Technology 60 (2020) 102084. https://doi.org/10.1016/j.jddst.2020.102084.

F.A. Razzaq, M. Asif, S. Asghar, M.S. Iqbal, I.U. Khan, S.-U.-D. Khan, M. Irfan, H.K. Syed, A. Khames, H. Mahmood. Glimepiride-loaded nanoemulgel; development, in vitro characterization, ex vivo permeation and in vivo antidiabetic evaluation. Cells 10 (2021) 2404. https://doi.org/10.3390/cells10092404.

M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M. Mozafari. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10 (2018) 57. https://doi.org/10.3390/pharmaceutics10020057.

O. Sarheed, M. Dibi, K.V. Ramesh. Studies on the effect of oil and surfactant on the formation of alginate-based O/W lidocaine nanocarriers using nanoemulsion template. Pharmaceutics 12 (2020) 1223. https://doi.org/10.3390/pharmaceutics12121223.

C.W. Pouton. Formulation of self-emulsifying drug delivery systems. Advanced Drug Delivery Reviews 25 (1997) 47-58. https://doi.org/10.1016/S0169-409X(96)00490-5.

M.H. Alaayedi, N.K. Maraie. Lomustine’s nanoemulsion as nose-to-brain drug delivery system for CNS tumor treatment. Saudi Pharmaceutical Journal 31 (2023) 101692. https://doi.org/10.1016/j.jsps.2023.06.025.

R. Song, Y. Lin, Z. Li. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. Ultrasonics Sonochemistry 82 (2022) 105904. https://doi.org/10.1016/j.ultsonch.2021.105904.

S.A.A. Radwan, A.N. ElMeshad, R.A. Shoukri. Microemulsion loaded hydrogel as a promising vehicle for dermal delivery of the antifungal sertaconazole: design, optimization and ex vivo evaluation. Drug Development and Industrial Pharmacy 43 (2017) 1351-1365. https://doi.org/10.1080/03639045.2017.1318899.

R.A. Dahash, N.A. Rajab. Formulation and Investigation of Lacidipine as a Nanoemulsions. Iraqi Journal of Pharmaceutical Sciences 29 (2020) 41-54. https://doi.org/10.31351/vol29iss1pp41-54.

Y.-T. Zhang, Z. Li, K. Zhang, H.-Y. Zhang, Z.-H. He, Q. Xia, J.-H. Zhao, N.-P. Feng. Co-delivery of evodiamine and rutaecarpine in a microemulsion-based hyaluronic acid hydrogel for enhanced analgesic effects on mouse pain models. International Journal of Pharmaceutics 528 (2017) 100-106. https://doi.org/10.1016/j.ijpharm.2017.05.064.

L.K. Al-Halaseh, N.A. Al-Jawabri, S.K. Tarawneh, W.K. Al-Qdah, M.N. Abu-Hajleh, A.M. Al-Samydai, M.A. Ahmed. A review of the cosmetic use and potentially therapeutic importance of hyaluronic acid. Journal of Applied Pharmaceutical Science 12 (2022) 34-41. https://doi.org/10.7324/JAPS.2022.120703.

M.X. Chen, K.S. Alexander, G. Baki. Formulation and evaluation of antibacterial creams and gels containing metal ions for topical application. Journal of Pharmaceutics 2016 (2016) 10. https://doi.org/10.1155/2016/5754349.

M.G.B. Dantas, S.A.G.B. Reis, C.M.D. Damasceno, L.A. Rolim, P.J. Rolim-Neto, F.O. Carvalho, L.J. Quintans-Junior, J.R.G.d.S. Almeida. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. The Scientific World Journal 2016 (2016) 4. https://doi.org/10.1155/2016/7394685.

R. Hamed, W.a. Abu Alata, M. Abu-Sini, D.H. Abulebdah, A.M. Hammad, R. Aburayya. Development and comparative evaluation of ciprofloxacin nanoemulsion-loaded bigels prepared using different ratios of oleogel to hydrogels. Gels 9 (2023) 592. https://doi.org/10.3390/gels9070592.

S. Bhattacharjee. DLS and zeta potential–what they are and what they are not? Journal of Controlled Release 235 (2016) 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017.

P. Gadkari, P. Patil, R. Saudagar. Formulation, development and evaluation of topical nanoemulgel of tolnaftate. Journal of Drug Delivery and Therapeutics 9 (2019) 208-213. https://doi.org/10.22270/jddt.v9i2-s.2495.

R. Jain, R. Singh, R. Badhwar, T. Gupta, H. Popli. Development and optimization of Clitoria Teratea synthesized silver nanoparticles and its application to nanogel systems for Wound Healing. Drug Development and Industrial Pharmacy 50(3) (2024) 181-191. https://doi.org/10.1080/03639045.2024.2308043.

V.K. Rai, N. Mishra, K.S. Yadav, N.P. Yadav. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release 270 (2018) 203-225. https://doi.org/10.1016/j.jconrel.2017.11.049.

H. Mahdiani, F. Yazdani, M. Khoramipour, V. Valizadeh, H. Bakhshandeh, R. Dinarvand. Preparation and physicochemical characterization of hyaluronic acid-lysine nanogels containing serratiopeptidase to con¬trol biofilm formation. Scientific Reports 14 (2024) 6111. https://doi.org/10.1038/s41598-024-56732-9.

P. Lakshmi, K. Harini. Design and Optimization of thermo-reversible nasal in situ gel of atomoxetine hydrochloride using taguchi orthogonal array design. Dhaka University Journal of Pharmaceutical Sciences 18 (2019) 183-193. https://doi.org/10.3329/dujps.v18i2.43261.

J. Dulińska-Litewka, K. Dykas, D. Felkle, K. Karnas, G. Khachatryan, A. Karewicz. Hyaluronic acid-silver nanocomposites and their biomedical applications: A review. Materials 15 (2021) 234. https://doi.org/10.3390/ma15010234.

V. Sita, P. Vavia. Bromocriptine nanoemulsion-loaded transdermal gel: optimization using factorial design, in vitro and in vivo evaluation. AAPS PharmSciTech 21 (2020) 80. https://doi.org/10.1208/s12249-020-1620-8.

N. Kumar, A. Mandal. Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy & Fuels 32 (2018) 6452-6466. https://doi.org/10.1021/acs.energyfuels.8b00043.

K.M. Hosny, H.M. Aldawsari, R.H. Bahmdan, A.M. Sindi, M. Kurakula, M.M. Alrobaian, A.Y. Aldryhim, H.M. Alkhalidi, H.H. Bahmdan, R.A. Khallaf. Preparation, optimization, and evaluation of hyaluronic acid-based hydrogel loaded with miconazole self-nanoemulsion for the treatment of oral thrush. AAPS PharmSciTech 20 (2019) 297. https://doi.org/10.1208/s12249-019-1496-7.

M.R. Babu, S. Vishwas, R. Khursheed, V. Harish, A.B. Sravani, F. Khan, B. Alotaibi, A. Binshaya, J. Disouza, P.S. Kumbhar. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Delivery and Translational Research 14 (2024) 1393-1431. https://doi.org/10.1007/s13346-023-01475-9.

M. Badran, J. Kuntsche, A. Fahr. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. European Journal of Pharmaceutical Sciences 36 (2009) 511-523. https://doi.org/10.1016/j.ejps.2008.12.008.

Published

09-11-2024 — Updated on 10-11-2024

How to Cite

Hameed, H. I., & Al-Mayahy, M. H. (2024). Combined approach of nanoemulgel and microneedle pre-treatment as a topical anticellulite therapy: Original scientific article. ADMET and DMPK, 12(6), 903–923. https://doi.org/10.5599/admet.2461

Issue

Section

Pharmaceutics

Most read articles by the same author(s)