Targeting hexokinase 2 to enhance anticancer efficacy of trichosanthin in HeLa and SCC25 cell models

Original scientific article

Authors

DOI:

https://doi.org/10.5599/admet.2455

Keywords:

Ribosome-inactivating protein, Glycolysis, Drug combination, Synergistic effect, Cancer therapy
Graphical Abstract

Abstract

Background and purpose: Trichosanthin (TCS) is a plant-based ribosome-inactivating protein exhibiting a range of pharmacological properties, including abortifacient and anticancer. However, the routine clinical use in cancer treatment was hampered by its antigenicity. Hexokinase 2 (HK2) is a pivotal regulator of glycolysis, where aberrant expression is observed in many cancers. This study investigates the anticancer effects and mechanisms of TCS in combination with benserazide (Benz), a HK2 inhibitor, in Hela and SCC25 cancer models. Experimental approach: MTT, colony-formation and cell cycle assays were performed to assess the cytotoxic effects of TCS and Benz in HeLa and SCC25 cells. Seahorse assay, western blotting, flow cytometry analysis and RNA sequencing were employed to investigate the pharmacological effects of the combo treatment. SCC25 cell xenograft mouse model was established for in vivo efficacy study. Key results: Combined use of TCS and Benz exhibited synergistic anticancer effects in both Hela and SCC25 cell models. The observed synergistic effects were attributed to the modulation of glycolysis by targeting HK2, leading to reduced lactate production and increased ROS accumulation which further inhibited colony formation and cell cycle progression, as well as triggered apoptosis. Moreover, this combination effectively inhibited NFκB/ERK signalling pathways, which were found to be significantly activated upon single use of TCS. It was found that the combination significantly suppressed the tumour growth in SCC25 cell xenograft mouse model. Conclusion: Our findings suggested that targeting HK2 and modulating glycolysis may offer a promising avenue for improving the therapeutic outcomes of TCS-based anticancer treatments.

 

Downloads

Download data is not yet available.

References

J. Luo, N.L. Solimini, S.J. Elledge. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136 (2009) 823-837. https://doi.org/10.1016/j.cell.2009.02.024.

I. Martinez-Reyes, N.S. Chandel. Cancer metabolism: looking forward. Nature Reviews Cancer 21 (2021) 669-680. https://doi.org/10.1038/s41568-021-00378-6.

N.N. Pavlova, J. Zhu, C.B. Thompson. The hallmarks of cancer metabolism: Still emerging. Cell Metab 34 (2022) 355-377. https://doi.org/10.1016/j.cmet.2022.01.007.

Y. Zhou, Y. Guo, K.Y. Tam. Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat 32 (2022) 441-453. https://doi.org/10.1080/13543776.2022.2027912.

E. Bobrovnikova-Marjon, J.B. Hurov. Targeting metabolic changes in cancer: novel therapeutic approaches. Annu Rev Med 65 (2014) 157-170. https://doi.org/10.1146/annurev-med-092012-112344.

R. Li, S. Mei, Q. Ding, Q. Wang, L. Yu, F. Zi. A pan-cancer analysis of the role of hexokinase II (HK2) in human tumour s. Sci Rep 12 (2022) 18807. https://doi.org/10.1038/s41598-022-23598-8.

I. Elia, M.C. Haigis. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat Metab 3 (2021) 21-32. https://doi.org/10.1038/s42255-020-00317-z.

K. Honigova, J. Navratil, B. Peltanova, H.H. Polanska, M. Raudenska, M. Masarik. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 1877 (2022) 188705. https://doi.org/10.1016/j.bbcan.2022.188705.

W. Shan, Y. Zhou, K.Y. Tam. The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov Today 27 (2022) 2574-2585. https://doi.org/10.1016/j.drudis.2022.05.017.

Z.E. Stine, Z.T. Schug, J.M. Salvino, C.V. Dang. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21 (2022) 141-162. https://doi.org/10.1038/s41573-021-00339-6.

S.R. Lin, C.H. Chang, C.F. Hsu, M.J. Tsai, H. Cheng, M.K. Leong, P.J. Sung, J.C. Chen, C.F. Weng. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence. Br J Pharmacol 177 (2020) 1409-1423. https://doi.org/10.1111/bph.14816.

M. Huang, J.J. Lu, J. Ding. Natural Products in Cancer Therapy: Past, Present and Future. Nat Prod Bioprospect 11 (2021) 5-13. https://doi.org/10.1007/s13659-020-00293-7.

P.C. Shaw, W.L. Chan, H.W. Yeung, T.B. Ng. Minireview: trichosanthin--a protein with multiple pharmacological properties. Life Sci 55 (1994) 253-262. https://doi.org/10.1016/0024-3205(94)00727-6.

O. Sha, J. Niu, T.B. Ng, E.Y. Cho, X. Fu, W. Jiang. Anti- tumour action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol 71 (2013) 1387-1393. https://doi.org/10.1007/s00280-013-2096-y.

W.W. Shi, K.B. Wong, P.C. Shaw. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 10 (2018) 335. https://doi.org/10.3390/toxins10080335.

Y. Tan, J. Xiang, Z. Huang, L. Wang, Y. Huang. Trichosanthin inhibits cell growth and metastasis by promoting pyroptosis in non-small cell lung cancer. J Thorac Dis 14 (2022) 1193-1202. https://doi.org/10.21037/jtd-22-282.

E.F. Fang, C.Z. Zhang, L. Zhang, J.H. Wong, Y.S. Chan, W.L. Pan, X.L. Dan, C.M. Yin, C.H. Cho, T.B. Ng. Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One 7 (2012) e41592. https://doi.org/10.1371/journal.pone.0041592.

K. Wang, X. Wang, M. Zhang, Z. Ying, Z. Zhu, K.Y. Tam, C. Li, G. Zhou, F. Gao, M. Zeng, S.C.W. Sze, X. Wang, O. Sha. Trichosanthin Promotes Anti- tumour Immunity through Mediating Chemokines and Granzyme B Secretion in Hepatocellular Carcinoma. Int J Mol Sci 24 (2023) 1416. https://doi.org/10.3390/ijms24021416.

F. Li, Y. Mei, Y. Wang, C. Chen, J. Tu, B. Xiao, L. Xu. Trichosanthin inhibits antigen-specific T cell expansion through nitric oxide-mediated apoptosis pathway. Cell Immunol 234 (2005) 23-30. https://doi.org/10.1016/j.cellimm.2005.04.015.

J.Q. Lu, K.B. Wong, P.C. Shaw. A Sixty-Year Research and Development of Trichosanthin, a Ribosome-Inactivating Protein. Toxins 14 (2022) 1416. https://doi.org/10.3390/toxins14030178.

Y. Chen, M. Zhang, H. Jin, Y. Tang, H. Wang, Q. Xu, Y. Li, F. Li, Y. Huang. Intein-mediated site-specific synthesis of tumour -targeting protein delivery system: Turning PEG dilemma into prodrug-like feature. Biomaterials 116 (2017) 57-68. https://doi.org/10.1016/j.biomaterials.2016.11.033.

C. You, Y. Sun, S. Zhang, G. Tang, N. Zhang, C. Li, X. Tian, S. Ma, Y. Luo, W. Sun, F. Wang, X. Liu, Y. Xiao, Y. Gong, J. Zhang, C. Xie. Trichosanthin enhances sensitivity of non-small cell lung cancer (NSCLC) TRAIL-resistance cells. Int J Biol Sci 14 (2018) 217-227. https://doi.org/10.7150/ijbs.22811.

Z. Zhu, Z. Ying, M. Zeng, Q. Zhang, G. Liao, Y. Liang, C. Li, C. Zhang, X. Wang, W. Jiang, P. Luan, O. Sha. Trichosanthin cooperates with Granzyme B to restrain tumour formation in tongue squamous cell carcinoma. BMC Complement Med Ther 21 (2021) 88. https://doi.org/10.1186/s12906-021-03266-6.

K. Zhang, J. Xu, X. Huang, L. Wu, C. Wen, Y. Hu, Y. Su, Y. Chen, Z. Zhang. Trichosanthin down-regulated p210Bcr-Abl and enhanced imatinib-induced growth arrest in chronic myelogenous leukemia cell line K562. Cancer Chemother Pharmacol 60 (2007) 581-587. https://doi.org/10.1007/s00280-007-0457-0.

W. Li, M. Zheng, S. Wu, S. Gao, M. Yang, Z. Li, Q. Min, W. Sun, L. Chen, G. Xiang, H. Li. Benserazide, a dopadecarboxylase inhibitor, suppresses tumour growth by targeting hexokinase 2. J Exp Clin Cancer Res 36 (2017) 58. https://doi.org/10.1186/s13046-017-0530-4.

E.G. Irene V. Bijnsdorp, Godefridus J. Peters, Analysis of Drug Interactions, in Cancer Cell Culture, I.A. Cree (Ed.), Humana Press, New York, 2011. https://doi.org/10.1007/978-1-61779-080-5

T.C. Chou. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70 (2010) 440-446. https://doi.org/10.1158/0008-5472.CAN-09-1947.

B. El Hassouni, G. Mantini, G. Li Petri, M. Capula, L. Boyd, H.N.W. Weinstein, A. Valles-Marti, M.C.M. Kouwenhoven, E. Giovannetti, B.A. Westerman, G.J. Peters, E.P. Group. To Combine or Not Combine: Drug Interactions and Tools for Their Analysis. Reflections from the EORTC-PAMM Course on Preclinical and Early-phase Clinical Pharmacology. Anticancer Res 39 (2019) 3303-3309. https://doi.org/10.21873/anticanres.13472.

A. Nabbi, K. Riabowol. Rapid Isolation of Nuclei from Cells In Vitro. Cold Spring Harb Protoc 2015 (2015) 769-772. https://doi.org/10.1101/pdb.prot083733.

C. Liu, X. Wang, Y. Zhang. The Roles of HK2 on tumour igenesis of Cervical Cancer. Technol Cancer Res Treat 18 (2019) 1533033819871306. https://doi.org/10.1177/1533033819871306.

C. Liu, H. Li, H. Huang, P. Zheng, Z. Li. The Correlation of HK2 Gene Expression with the Occurrence, Immune Cell Infiltration, and Prognosis of Renal Cell Carcinoma. Dis Markers 2022 (2022) 1452861. https://doi.org/10.1155/2022/1452861.

K.C. Patra, Q. Wang, P.T. Bhaskar, L. Miller, Z. Wang, W. Wheaton, N. Chandel, M. Laakso, W.J. Muller, E.L. Allen, A.K. Jha, G.A. Smolen, M.F. Clasquin, B. Robey, N. Hay. Hexokinase 2 is required for tumour initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24 (2013) 213-228. https://doi.org/10.1016/j.ccr.2013.06.014.

S.N. Garcia, R.C. Guedes, M.M. Marques. Unlocking the Potential of HK2 in Cancer Metabolism and Therapeutics. Curr Med Chem 26 (2019) 7285-7322. https://doi.org/10.2174/0929867326666181213092652.

C.R. Reczek, N.S. Chandel. The Two Faces of Reactive Oxygen Species in Cancer. Annual Review of Cancer Biology 1 (2017) 79-98. https://doi.org/10.1146/annurev-cancerbio-041916-065808.

S. Rodic, M.D. Vincent. Reactive oxygen species (ROS) are a key determinant of cancer's metabolic phenotype. Int J Cancer 142 (2018) 440-448. https://doi.org/10.1002/ijc.31069.

M. Lee, J.H. Yoon. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication. World J Biol Chem 6 (2015) 148-161. https://doi.org/10.4331/wjbc.v6.i3.148.

C. Zhu, C. Zhang, X. Cui, J. Wu, Z. Cui, X. Shen. Trichosanthin inhibits cervical cancer by regulating oxidative stress-induced apoptosis. Bioengineered 12 (2021) 2779-2790. https://doi.org/10.1080/21655979.2021.1930335.

B. Wei, Q. Huang, S. Huang, W. Mai, X. Zhong. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-kappaB/p53 pathway. J Pharmacol Sci 131 (2016) 77-83. https://doi.org/10.1016/j.jphs.2016.03.001.

L. Dong, J. He, L. Luo, K. Wang. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 16 (2023) 92. https://doi.org/10.3390/ph16010092.

S.K. Parks, W. Mueller-Klieser, J. Pouyssegur. Lactate and Acidity in the Cancer Microenvironment. Annual Review of Cancer Biology, Vol 4 4 (2020) 141-158. https://doi.org/10.1146/annurev-cancerbio-030419-033556.

P. Wu, Y. Zhou, Y. Guo, S.L. Zhang, K.Y. Tam. Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents. Drug Discov Today 26 (2021) 836-844. https://doi.org/10.1016/j.drudis.2021.01.003.

H.K. Matthews, C. Bertoli, R.A.M. de Bruin. Cell cycle control in cancer. Nat Rev Mol Cell Biol 23 (2022) 74-88. https://doi.org/10.1038/s41580-021-00404-3.

S. Khan, Z. Lopez-Dee, R. Kumar, J. Ling. Activation of NFkB is a novel mechanism of pro-survival activity of glucocorticoids in breast cancer cells. Cancer Lett 337 (2013) 90-95. https://doi.org/10.1016/j.canlet.2013.05.020.

K. Taniguchi, M. Karin. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18 (2018) 309-324. https://doi.org/10.1038/nri.2017.142.

B. Wei, Q. Huang, S. Huang, W. Mai, X. Zhong. Trichosanthin-induced autophagy in gastric cancer cell MKN-45 is dependent on reactive oxygen species (ROS) and NF-κB/p53 pathway. J Pharmacol Sci 131 (2016) 77-83. https://doi.org/10.1016/j.jphs.2016.03.001.

D. Verzella, A. Pescatore, D. Capece, D. Vecchiotti, M.V. Ursini, G. Franzoso, E. Alesse, F. Zazzeroni. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 11 (2020) 210. https://doi.org/10.1038/s41419-020-2399-y.

Y. Chang, W. Xiong, C. Zou, P. Zeng, J. Hou, B. Muhitdinov, Y. Shen, Y. Huang, S. Guo. Mitigation of Anti-Drug Antibody Production for Augmenting Anticancer Efficacy of Therapeutic Protein via Co-Injection of Nano-Rapamycin. Small (2023) e2303916. https://doi.org/10.1002/smll.202303916.

Z. Setayesh-Mehr, M. Poorsargol. Toxic proteins application in cancer therapy. Mol Biol Rep 48 (2021) 3827-3840. https://doi.org/10.1007/s11033-021-06363-4.

Downloads

Published

12-09-2024 — Updated on 22-09-2024

How to Cite

Tam, K., Ran, M., Shan, W., Wang, K., Sha, O., & Zhou, Y. (2024). Targeting hexokinase 2 to enhance anticancer efficacy of trichosanthin in HeLa and SCC25 cell models: Original scientific article. ADMET and DMPK, 12(6), 821–841. https://doi.org/10.5599/admet.2455

Issue

Section

Pharmacology

Most read articles by the same author(s)

1 2 > >>