Food and bile micelle binding of zwitterionic antihistamine drugs

Authors

  • Rie Takeuchi Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1, Noji-higashi, Kusatsu, Shiga 525-8577, Japan https://orcid.org/0009-0007-0710-1428
  • Kiyohiko Sugano Molecular Pharmaceutics Lab.College of Pharmaceutical SciencesRitsumeikan University https://orcid.org/0000-0001-5652-1786

DOI:

https://doi.org/10.5599/admet.2454

Keywords:

bile micelles, food, antihistamine, zwitterion, food effect

Abstract

Background and purpose: The food effects on oral drug absorption are challenging to predict from in vitro data. Food intake has been reported to reduce the oral absorption of several zwitterionic antihistamine drugs. However, the mechanism for this negative food effect has not been clear. The purpose of the present study was to evaluate the bile micelle and food binding of zwitterionic antihistamine drugs as a possible mechanism for the negative food effects on their oral drug absorption. Experimental approach: Bilastine (BIL), cetirizine (CET), fexofenadine (FEX), and olopatadine (OLO) were employed as model drugs. The fed/fasted AUC ratios of BIL, CET, FEX, and OLO after oral administration are reported to be 0.60 to 0.7, 0.92, 0.76 to 0.85, and 0.84, respectively. The unbound fraction (fu) of these drugs in the fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) was measured by dynamic dialysis. Key results: The FeSSIF/ FaSSIF fu ratios were 0.90 (BIL), 0.46 (CET), 0.76 (FEX), and 0.78 (OLO). In the presence of BFH, the fu ratios were reduced to 0.52 (BIL), 0.22 (CET), 0.39 (FEX), and 0.44 (OLO). Conclusion: Despite being zwitterion at pH 6.5, the antihistamine drugs were bound to bile micelles. Bile micelle and food binding were suggested to cause a negative food effect on the oral absorption of these drugs. However, the AUC ratio was not quantitatively predicted by using FeSSIF + BFH.

Downloads

Download data is not yet available.

References

D.M. Mudie, G.L. Amidon, G.E. Amidon. Physiological parameters for oral delivery and in vitro testing. Molecular Pharmaceutics 7 (2010) 1388-1405. https://doi.org/10.1021/mp100149j.

K. Sugano, M. Kataoka, C. da Costa Mathews, S. Yamashita. Prediction of food effect by bile micelles on oral drug absorption considering free fraction in intestinal fluid. European Journal of Pharmaceutical Sciences 40 (2010) 118-124. https://doi.org/10.1016/j.ejps.2010.03.011.

A. Emami Riedmaier. Predicting food effects: are we there yet? The AAPS Journal 24 (2022) 25. https://doi.org/10.1208/s12248-021-00674-x.

H. Ramasubramanian, S. Castleberry. Biopharmaceutical Modeling of Food Effect─Exploring the Role of Dietary Fat. Molecular Pharmaceutics 20 (2023) 2726-2737. https://doi.org/10.1021/acs.molpharmaceut.3c00170.

Y. Akiyama, S. Ito, T. Fujita, K. Sugano. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. European Journal of Pharmaceutical Sciences 155 (2020) 105543. https://doi.org/10.1016/j.ejps.2020.105543.

K. Sugano, K. Terada. Rate-and extent-limiting factors of oral drug absorption: theory and applications. Journal of Pharmaceutical Sciences 104 (2015) 2777-2788. https://doi.org/10.1002/jps.24391.

T. Sumiji, K. Sugano. Food and bile micelle binding of quaternary ammonium compounds. ADMET and DMPK 11 (2023) 409-417. https://doi.org/10.5599/admet.2023.

TAIHO PHARMACEUTICAL CO., LTD. Bilastine Drug Product Information. https://www.taiho.co.jp/medical/product/detail/index.html?_productGroupId=990.

P. Paśko, T. Rodacki, R. Domagała-Rodacka, K. Palimonka, M. Marcinkowska, D. Owczarek. Second generation H1-antihistamines interaction with food and alcohol—a systematic review. Biomedicine & Pharmacotherapy 93 (2017) 27-39. https://doi.org/10.1016/j.biopha.2017.06.008.

J. Coimbra, M. Puntes, I. Gich, J. Martínez, P. Molina, R. Antonijoan, C. Campo, L. Labeaga. Lack of clinical relevance of bilastine-food interaction in healthy volunteers: A wheal and flare study. International Archives of Allergy and Immunology 183 (2022) 1241-1250. https://doi.org/10.1159/000524856.

GSK. Cetrizine Drug Product Information. https://gskpro.com/ja-jp/products-info/zyrtec/index/.

[Sanofi. Fexofenadine Drug Product Information. https://www.e-mr.sanofi.co.jp/dam/jcr:2d468ede-5f77-43ce-9d19-057401361c43/allegra.pdf.

M. Stoltz, T. Arumugham, C. Lippert, D. Yu, V. Bhargava, M. Eller, S. Weir. Effect of food on the bioavailability of fexofenadine hydrochloride (MDL 16455A). Biopharmaceutics and Drug Disposition 18 (1997) 645-648. https://doi.org/10.1002/(SICI)1099-081X(199710)18:7<645::AID-BDD50>3.0.CO;2-3.

Kyowa Kirin Co., Ltd. Olopatadine Drug Product Information. https://medical.kyowakirin.co.jp/site/drugpdf/interv/alk_in.pdf.

A. Avdeef. Absorption and Drug Development: Solubility, Permeability, and Charge State, Second Edition, John Wiley & Sons, Inc., 2012. Print ISBN:9781118057452

G.K. Dresser, D.G. Bailey, B.F. Leake, U.I. Schwarz, P.A. Dawson, D.J. Freeman, R.B. Kim. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clinical Pharmacology and Therapeutics 71 (2002) 11-20. https://doi.org/10.1067/mcp.2002.121152.

A. Marosi, Z. Kovács, S. Béni, J. Kökösi, B. Noszál. Triprotic acid-base microequilibria and pharmacokinetic sequelae of cetirizine. European Journal of Pharmaceutical Sciences 37 (2009) 321-328. https://doi.org/10.1016/j.ejps.2009.03.001.

G.P. van Balen, G. Caron, G. Ermondi, A. Pagliara, T. Grandi, G. Bouchard, R. Fruttero, P.-A. Carrupt, B. Testa. Lipophilicity behaviour of the zwitterionic antihistamine cetirizine in phosphatidylcholine liposomes/water systems. Pharmaceutical Research 18 (2001) 694-701. https://doi.org/10.1023/a:1011049830615.

K. Bittermann, S. Spycher, K.-U. Goss. Comparison of different models predicting the phospholipid-membrane water partition coefficients of charged compounds. Chemosphere 144 (2016) 382-391. https://doi.org/10.1016/j.chemosphere.2015.08.065.

A. Pagliara, P.A. Carrupt, G. Caron, P. Gaillard, B. Testa. Lipophilicity profiles of ampholytes. Chemical Reviews 97 (1997) 3385-3400. https://doi.org/10.1021/cr9601019.

A. Ebert, C. Dahley. Can membrane permeability of zwitterionic compounds be predicted by the solubility diffusion model? European Journal of Pharmaceutical Sciences (2024) 106819. https://doi.org/10.1016/j.ejps.2024.106819.

Downloads

Published

29-08-2024 — Updated on 29-08-2024

Issue

Section

Original Scientific Articles

How to Cite

Food and bile micelle binding of zwitterionic antihistamine drugs. (2024). ADMET and DMPK, 12(4), 649-656. https://doi.org/10.5599/admet.2454

Similar Articles

1-10 of 137

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)